Viscosity of electrolyte solutions: a mode-coupling theory.

J Phys Condens Matter

Institute of Complex Systems, ICS-3, Research Centre Jülich, Germany.

Published: November 2012

We present a versatile theoretical method for calculating the steady-state viscosity and shear relaxation function of strong electrolyte solutions. In this method, the ions are described on a primitive model level as charged Brownian spheres, and the essential ion-ion hydrodynamic interactions (HIs) are accounted for in the shear relaxation effect of the ionic atmosphere. The method combines a many-component mode-coupling theory (MCT) approach by Nägele et al (1998 J. Chem. Phys. 108 9893) with a simplified solution scheme, leading to an analytic expression for the shear relaxation contribution to the viscosity. This expression accounts for both the excluded volumes of the ions and their HIs. We show that the limiting law results for the viscosity of electrolyte mixtures by Falkenhagen and by Onsager and Fuoss are recovered at very low concentrations, and we discuss HIs corrections appearing at higher concentrations. Our numerical results for a 1:1 electrolyte reveal a strong enlargement of the viscosity caused by the HIs. The high-frequency viscosity gives the largest contribution to the total viscosity at higher concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/24/46/464108DOI Listing

Publication Analysis

Top Keywords

shear relaxation
12
viscosity electrolyte
8
electrolyte solutions
8
mode-coupling theory
8
higher concentrations
8
viscosity
7
solutions mode-coupling
4
theory versatile
4
versatile theoretical
4
theoretical method
4

Similar Publications

Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.

View Article and Find Full Text PDF

Molecular dynamics simulation of an aqueous solution of lithium bis(trifluoromethanesulfonyl)amide, LiTFSA, was performed at various concentrations to relate its liquid structure with frequency-dependent shear viscosity. The structure factor exhibited a low- peak that represents a heterogeneous structure composed of water and anion domains, and the lithium ion existed in the water domain due to its strong hydration. The frequency-dependent shear viscosity showed bimodal relaxation, and the relative contribution of the slower mode increased with an increase in the salt concentration.

View Article and Find Full Text PDF

The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous-crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from -150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction.

View Article and Find Full Text PDF

Relaxation Phenomena in Low-Density and High-Density Polyethylene.

Polymers (Basel)

December 2024

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), Leninskiy Prospekt 31, 119071 Moscow, Russia.

A study was conducted on the internal friction spectra and temperature dependencies of the frequency of free damped oscillatory processes excited in the investigated samples of low-density polyethylene (LDPE) and high-density polyethylene (HDPE) over a temperature range from -150 °C to +150 °C. It was found that the internal friction spectra exhibit several local dissipative processes of varying intensity, which manifest in different temperature intervals. The structure of the internal friction spectra and the peaks of dissipative losses are complex, as evidenced by the occurrence of sharp, locally temperature-dependent jumps in the intensity of dissipative losses observed throughout the entire temperature range.

View Article and Find Full Text PDF

Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!