We present a versatile theoretical method for calculating the steady-state viscosity and shear relaxation function of strong electrolyte solutions. In this method, the ions are described on a primitive model level as charged Brownian spheres, and the essential ion-ion hydrodynamic interactions (HIs) are accounted for in the shear relaxation effect of the ionic atmosphere. The method combines a many-component mode-coupling theory (MCT) approach by Nägele et al (1998 J. Chem. Phys. 108 9893) with a simplified solution scheme, leading to an analytic expression for the shear relaxation contribution to the viscosity. This expression accounts for both the excluded volumes of the ions and their HIs. We show that the limiting law results for the viscosity of electrolyte mixtures by Falkenhagen and by Onsager and Fuoss are recovered at very low concentrations, and we discuss HIs corrections appearing at higher concentrations. Our numerical results for a 1:1 electrolyte reveal a strong enlargement of the viscosity caused by the HIs. The high-frequency viscosity gives the largest contribution to the total viscosity at higher concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/24/46/464108 | DOI Listing |
J Mater Chem B
January 2025
School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan.
Molecular dynamics simulation of an aqueous solution of lithium bis(trifluoromethanesulfonyl)amide, LiTFSA, was performed at various concentrations to relate its liquid structure with frequency-dependent shear viscosity. The structure factor exhibited a low- peak that represents a heterogeneous structure composed of water and anion domains, and the lithium ion existed in the water domain due to its strong hydration. The frequency-dependent shear viscosity showed bimodal relaxation, and the relative contribution of the slower mode increased with an increase in the salt concentration.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), Leninskiy Prospekt 31, 119071 Moscow, Russia.
The spectra of internal friction and temperature dependencies of the frequency of a free-damped oscillation process excited in the specimens of an amorphous-crystalline copolymer of polyoxymethylene with the co-monomer trioxane (POM-C) with a degree of crystallinity ~60% in the temperature range from -150 °C to +170 °C has been studied. It has been established that the spectra of internal friction show five local dissipative processes of varying intensity, manifested in different temperature ranges of the spectrum. An anomalous decrease in the frequency of the oscillatory process was detected in the temperature ranges where the most intense dissipative losses appear on the spectrum of internal friction.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), Leninskiy Prospekt 31, 119071 Moscow, Russia.
A study was conducted on the internal friction spectra and temperature dependencies of the frequency of free damped oscillatory processes excited in the investigated samples of low-density polyethylene (LDPE) and high-density polyethylene (HDPE) over a temperature range from -150 °C to +150 °C. It was found that the internal friction spectra exhibit several local dissipative processes of varying intensity, which manifest in different temperature intervals. The structure of the internal friction spectra and the peaks of dissipative losses are complex, as evidenced by the occurrence of sharp, locally temperature-dependent jumps in the intensity of dissipative losses observed throughout the entire temperature range.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Institute of Continuum Mechanics and Biomechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90762 Fürth, Germany. Electronic address:
Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!