The kinetics and folding pathways of intramolecular G-quadruplex nucleic acids.

J Am Chem Soc

Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, United Kingdom.

Published: November 2012

The folding kinetics of G-quadruplex forming sequences is critical to their capacity to influence biological function. While G-quadruplex structure and stability have been relatively well studied, little is known about the kinetics of their folding. We employed a stopped-flow mixing technique to systematically investigate the potassium-dependent folding kinetics of telomeric RNA and DNA G-quadruplexes and RNA G-quadruplexes containing only two G-quartets formed from sequences r[(GGA)(3)GG] and r[(GGUUA)(3)GG]. Our findings suggest a folding mechanism that involves two kinetic steps with initial binding of a single K(+), irrespective of the number of G-quartets involved or whether the G-quadruplex is formed from RNA or DNA. The folding rates for telomeric RNA and DNA G-quadruplexes are comparable at near physiological [K(+)] (90 mM) (τ = ~60 ms). The folding of a 2-quartet RNA G-quadruplex with single nucleotide A loops is considerably slower (τ = ~700 ms), and we found that the time required to fold a UUA looped variant (τ > 100 s, 500 mM K(+)) exceeds the lifetimes of some regulatory RNAs. We discuss the implications of these findings with respect to the fundamental properties of G-quadruplexes and their potential functions in biology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja309851tDOI Listing

Publication Analysis

Top Keywords

rna dna
12
kinetics folding
8
folding kinetics
8
telomeric rna
8
dna g-quadruplexes
8
folding
6
g-quadruplex
5
rna
5
kinetics
4
folding pathways
4

Similar Publications

Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA.

View Article and Find Full Text PDF

Background: Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers.

View Article and Find Full Text PDF

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!