We present here the use of a simultaneous TGA/DSC thermal analyzer as a high-throughput reactor system to measure after calibration the heat of reaction and therefore the catalytic activity of heterogeneous catalysts in a fast, reliable and reproducible manner. By coupling the gas outlet of the analyzer with a mass spectrometer via a heated capillary additional data can be acquired. As a test reaction the oxidation of carbon monoxide with synthetic air, using Hopcalite and several transition and noble metals as catalysts, was chosen. The setup presented allows the rapid sequential screening of about 70 catalysts per day.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/co3000659 | DOI Listing |
Nanoscale
January 2025
School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
Despite the potential to significantly enhance the economic viability of biomass-based platforms through the selective conversion of glycerol to 1,3-dihydroxyacetone (DHA), a formidable challenge persists in simultaneously achieving high catalytic activity and stability along this reaction pathway. Herein, we have devised a strategic approach to manipulate the interfacial integration within composite catalysts to address the performance trade-off. Through the modulation of the composite process involving a bio-templated porous ZSM-5 zeolite platform (bZ) and an Au/CuZnO catalyst, three distinct interfacial bonding modes were achieved: physical milling, encapsulation by zeolite, and growth on zeolite.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.
Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
Simple and sustainable three- and four-step sequences of di-OH-protection/mono-OMe-deprotection/OrgRC and di-OH-protection/mono-OMe-deprotection/OrgRC/OMe-deprotection protocols were developed to construct biologically active natural products of irisoquin, irisoquin A, irisoquin D, irisoquin F, sorgoleone-364, embelin, rapanone, 5--methylembelin, 5--methylrapanone and their analogues from the commercially available 2,5-dihydroxy-1,4-benzoquinone, aliphatic aldehydes and Hantzsch ester (1,4-DHP) in very good to excellent yields by using organocatalytic reductive coupling (OrgRC) as key reaction. Many of these natural compounds exhibited a broad spectrum of biological activities including antioxidant, anti-inflammatory, anticonvulsant, anxiolytic, analgesic, anthelmintic, antitumor, antibacterial, and antifertility properties. At the same time, simple and readily available 2,5-dihydroxy-1,4-benzoquinone was transformed into a functionally rich library of 2,5-dihydroxy-3,6-dialkyl-1,4-benzoquinones in very good yields by using sequential OrgRC followed by deprotection reactions and resulting natural/unnatural products would be excellent targets for investigation to show their biological activities compared to known natural products.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFDalton Trans
January 2025
Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
Metal-catalyzed hydrogen isotope exchange (HIE) has become a valuable method for incorporating deuterium and tritium into organic molecules, with applications in a wide range of scientific fields. This study explores the role of transition metal cooperativity in enhancing catalytic hydrogen/deuterium (H/D) exchange using early-late heterobimetallic polyhydride (ELHB) complexes. A series of four ELHB complexes, of general formula [M(CHBu)(H)M'Cp*], combining early transition metals (M = Hf, Ta) with late metals (M' = Ir, Os), were synthesized and evaluated for their catalytic activity in HIE of (hetero)arenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!