We developed a method of culturing and phenotyping of a monolayer of cells of the retinal tissue, thymus and spleen on the basis of organotypic culture. All characteristic types of neurons and fibroblasts were found in their microenvironment in the retinal cell monolayer. Lymphocytes, macrophages, and fibroblasts were verified in the monolayer of thymus and spleen cells. Histological staining, immunocytochemistry, and electron microscopy demonstrated the possibility of assessing the differentiation degree and functional activity of the cell monolayer. The developed technique preserves cell-cell interactions and a variety of cell types characteristic of the examined organ in the monolayer. This opens up new prospects for its application in basic research and in screening of different physiologically active substances.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-012-1829-yDOI Listing

Publication Analysis

Top Keywords

cell monolayer
12
organotypic culture
8
screening physiologically
8
physiologically active
8
active substances
8
thymus spleen
8
monolayer
6
method creation
4
cell
4
creation cell
4

Similar Publications

The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.

View Article and Find Full Text PDF

Human nasal epithelium (HNE) organoid models of SARS-CoV-2 infection were adopted globally during the COVID-19 pandemic once it was recognized that the Vero cell line commonly used by virologists did not recapitulate human infection. However, the widespread use of HNE organoid infection models was hindered by the high cost of media and consumables, and the inherent limitation of basal cells as a scalable continuous source of cells. The human Calu-3 cell line, generated from a lung adenocarcinoma, was shown to largely recapitulate infection of the human epithelium and to preserve the SARS-CoV-2 genomic fidelity.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage.

View Article and Find Full Text PDF

Rhamnogalacturonan promotes intestinal mucosal repair through increased cell migration.

Am J Physiol Gastrointest Liver Physiol

January 2025

Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.

Mucosal healing is the primary goal for Inflammatory Bowel Diseases (IBD) treatment. We previously showed the direct beneficial effects of rhamnogalacturonan (RGal) on intestinal epithelial barrier function. Here, we aimed to evaluate the effect of RGal in intestinal epithelial wound healing.

View Article and Find Full Text PDF

Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!