Background: The Eastern hive honey bee, Apis cerana cerana is a native and widely bred honey bee species in China. Molecular biology research about this honey bee species is scarce, and genomic information for A. c. cerana is not currently available. Transcriptome and expression profiling data for this species are therefore important resources needed to better understand the biological mechanisms of A. c. cerana. In this study, we obtained the transcriptome information of A. c. cerana by RNA-sequencing and compared gene expression differences between queens and workers of A. c. cerana by digital gene expression (DGE) analysis.
Results: Using high-throughput Illumina RNA sequencing we obtained 51,581,510 clean reads corresponding to 4.64 Gb total nucleotides from a single run. These reads were assembled into 46,999 unigenes with a mean length of 676 bp. Based on a sequence similarity search against the five public databases (NR, Swissport, GO, COG, KEGG) with a cut-off E-value of 10(-5) using BLASTX, a total of 24,630 unigenes were annotated with gene descriptions, gene ontology terms, or metabolic pathways. Using these transcriptome data as references we analyzed the gene expression differences between the queens and workers of A. c. cerana using a tag-based digital gene expression method. We obtained 5.96 and 5.66 million clean tags from the queen and worker samples, respectively. A total of 414 genes were differentially expressed between them, with 189 up-regulated and 225 down-regulated in queens.
Conclusions: Our transcriptome data provide a comprehensive sequence resource for future A. c. cerana study, establishing an important public information platform for functional genomic studies in A. c. cerana. Furthermore, the DGE data provide comprehensive gene expression information for the queens and workers, which will facilitate our understanding of the molecular mechanisms of the different physiological aspects of the two castes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480438 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047954 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!