Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions.

PLoS One

Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.

Published: April 2013

Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate larvae of the fall armyworm Spodoptera frugiperda, and two of its main endoparasitoids, Campoletis sonorensis and Cotesia marginiventris, were released in the plots. Volatiles were collected from equally treated reference plants in the neighbourhood of the experimental field. The cumulative amount of 36 quantified volatile compounds determined for each line was in good accordance with findings from the laboratory; there was an almost 15-fold difference in total emission between the two extreme lines. We found significant differences among the lines with respect to the numbers of armyworms recovered from the plants, their average weight gain and parasitism rates. Average weight of the caterpillars was negatively correlated with the average total amount of volatiles released by the six inbred lines. However, neither total volatile emission nor any specific single compound within the blend could explain the differential parasitism rates among the lines, with the possible exception of (E)-2-hexenal for Campoletis sonorensis and methyl salicylate for Cotesia marginiventris. Herbivore-induced plant volatiles and/or correlates thereof contribute to reducing insect damage of maize plants through direct plant defence and enhanced attraction of parasitoids, alleged indirect defence. The potential to exploit these volatiles for pest control deserves to be further evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480431PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047589PLOS

Publication Analysis

Top Keywords

inbred lines
12
maize inbred
8
lines distinctly
8
plant volatiles
8
volatile emission
8
campoletis sonorensis
8
cotesia marginiventris
8
average weight
8
parasitism rates
8
lines
6

Similar Publications

Analyses of the genetic distance and composition of inbred lines are a prerequisite for parental selection and to exploit heterosis in plant breeding programs. The study aimed to assess genetic diversity and population structure of a maize germplasm panel comprising 182 founder lines and 866 derived inbred lines using Single Nucleotide Polymorphism (SNP) markers to identify genetically unique lines for hybrid breeding. The founder lines were genotyped with 1201 SNPs, and the derived lines with 1484 SNPs.

View Article and Find Full Text PDF

Liver ischemia-reperfusion (IR) injury is a common complication following liver surgery, significantly impacting the prognosis of liver transplantation and other liver surgeries. Betaine-homocysteine methyltransferase (BHMT), a crucial enzyme in the methionine cycle, has been previously confirmed the pivotal role in hepatocellular carcinoma, and it has also been demonstrated that BHMT inhibits inflammation, apoptosis, but its role in liver IR injury remains unknow. Following I/R injury, we found that BHMT expression was significantly upregulated in human liver transplant specimens, mice and hepatocytes.

View Article and Find Full Text PDF

Maize is one of the major crops that are susceptible to infection and subsequent aflatoxin contamination, which poses a serious health threat to humans and domestic animals. Here, an RNA interference (RNAi) approach called Host-Induced Gene Silencing (HIGS) was employed to suppress the -methyl transferase gene (, also called ), a key gene involved in aflatoxin biosynthesis. An RNAi vector carrying part of the gene was introduced into the B104 maize line.

View Article and Find Full Text PDF

Maize ( L.) production in sub-Saharan Africa can be improved by using hybrids with genetic resistance to maize lethal necrosis (MLN). This study aimed to assess the general (GCA) and specific combining ability (SCA), reciprocal effects, and quantitative genetic basis of MLN resistance and agronomic traits in tropical maize inbred lines.

View Article and Find Full Text PDF

Bisecting GlcNAc modification of vesicular GAS6 regulates CAFs activation and breast cancer metastasis.

Cell Commun Signal

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, P. R. China.

Background: Cancer-associated fibroblasts (CAFs) are a pivotal component of the tumor microenvironment (TME), playing key roles in tumor initiation, metastasis, and chemoresistance. While glycosylation is known to regulate various cellular processes, its impact on CAFs activation remains insufficiently explored.

Methods: We assessed the correlation between bisecting GlcNAc levels and CAFs markers (α-SMA, PDGFRA, PDGFRB) in breast cancer tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!