A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.

Sensors (Basel)

Department of Computer and Communication Systems Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Published: November 2013

Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472886PMC
http://dx.doi.org/10.3390/s120811307DOI Listing

Publication Analysis

Top Keywords

wireless sensor
8
sensor networks
8
sensor nodes'
8
energy consumption
8
sensor nodes
8
energy
7
sensor
6
self-optimizing scheme
4
scheme energy
4
energy balanced
4

Similar Publications

Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.

View Article and Find Full Text PDF

Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.

View Article and Find Full Text PDF

Objective: Common examinations for diagnosing obstructive sleep apnea (OSA) are polysomnography (PSG) and home sleep apnea testing (HSAT). However, both PSG and HSAT require that sensors be attached to a subject, which may disturb their sleep and affect the results. Hence, in this study, we aimed to verify a wireless radar framework combined with deep learning techniques to screen for the risk of OSA in home-based environments.

View Article and Find Full Text PDF

: This study aimed to assess knee joint function in post-stroke patients using wireless motion sensors and functional tests. This type of evaluation may be important for improving gait quality. : The study included 25 post-stroke patients (age 53.

View Article and Find Full Text PDF

Coal mining industry is one of the main source for economy of every nations, whereas safety in the underground coal mining area is still doubtful. According to some reports, there is heavy loss of life and money due to the occasional accidents in the coal mining area. Some existing researchers has been addressed this issue and approached their method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!