Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling.

Proc Natl Acad Sci U S A

Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.

Published: November 2012

Neutrophil recruitment into the joint is a hallmark of inflammatory arthritides, including rheumatoid arthritis (RA). In a mouse model of autoantibody-induced inflammatory arthritis, neutrophils infiltrate the joint via multiple chemoattractant receptors, including the leukotriene B(4) (LTB(4)) receptor BLT1 and the chemokine receptors CCR1 and CXCR2. Once in the joint, neutrophils perpetuate their own recruitment by releasing LTB(4) and IL-1β, presumably after activation by immune complexes deposited on joint structures. Two pathways by which immune complexes may activate neutrophils include complement fixation, resulting in the generation of C5a, and direct engagement of Fcγ receptors (FcγRs). Previous investigations showed that this model of autoantibody-induced arthritis requires the C5a receptor C5aR and FcγRs, but the simultaneous necessity for both pathways was not understood. Here we show that C5aR and FcγRs work in sequence to initiate and sustain neutrophil recruitment in vivo. Specifically, C5aR activation of neutrophils is required for LTB(4) release and early neutrophil recruitment into the joint, whereas FcγR engagement upon neutrophils induces IL-1β release and subsequent neutrophil-active chemokine production, ensuring continued inflammation. These findings support the concept that immune complex-mediated leukocyte activation is not composed of overlapping and redundant pathways, but that each element serves a distinct and critical function in vivo, culminating in tissue inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503206PMC
http://dx.doi.org/10.1073/pnas.1213797109DOI Listing

Publication Analysis

Top Keywords

neutrophil recruitment
12
recruitment joint
8
model autoantibody-induced
8
immune complexes
8
c5ar fcγrs
8
neutrophils
6
recruitment
5
joint
5
neutrophils orchestrate
4
orchestrate recruitment
4

Similar Publications

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation.

View Article and Find Full Text PDF

IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury.

Biomolecules

December 2024

Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan.

The prognosis of spinal cord injury (SCI) is closely linked to secondary injury processes, predominantly driven by neuroinflammation. Interleukin-18 (IL-18) plays a pivotal role in this inflammatory response. In previous work, we developed an anti-IL-18 antibody capable of neutralizing the active form of IL-18.

View Article and Find Full Text PDF

PEPITEM is an immune-modulatory peptide that effectively regulates inflammation and mitigates immune-mediated inflammatory diseases (IMIDs). Here, we identify two independently active tripeptide pharmacophores within PEPITEM and engineered peptidomimetics with enhanced pharmacodynamic properties. These peptidomimetics regulate T-cell trafficking in vitro and reduce T-cell, neutrophil and macrophage numbers in the inflamed peritoneal cavity in vivo.

View Article and Find Full Text PDF

Activation of autophagy with PF-06409577 alleviates heatstroke-induced organ injury.

Environ Int

January 2025

Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Teaching Hospital (900th Hospital of Joint Logistic Support Force), Fujian University of Traditional Chinese Medicine, Fuzhou 350025, China; Laboratory of Basic Medicine, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Dongfang Hospital, Xiamen University, Fuzhou 350025, China; Organ Transplant Institute, 900th Hospital of Joint Logistic Support Force, Fuzhou 350025, China. Electronic address:

Heat waves are a significant environmental issue threatening global human health. Extreme temperatures can lead to various heat-related illnesses, with heatstroke being among the most severe. Currently, there are no effective treatments to mitigate the multi-organ damage caused by heatstroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!