The amygdala is a key structure of the brain's reward system. Existing theories view its role in decision-making as restricted to an early valuation stage that provides input to decision mechanisms in downstream brain structures. However, the extent to which the amygdala itself codes information about economic choices is unclear. Here, we report that individual neurons in the primate amygdala predict behavioral choices in an economic decision task. We recorded the activity of amygdala neurons while monkeys chose between saving liquid reward with interest and spending the accumulated reward. In addition to known value-related responses, we found that activity in a group of amygdala neurons predicted the monkeys' upcoming save-spend choices with an average accuracy of 78%. This choice-predictive activity occurred early in trials, even before information about specific actions associated with save-spend choices was available. For a substantial number of neurons, choice-differential activity was specific for free, internally generated economic choices and not observed in a control task involving forced imperative choices. A subgroup of choice-predictive neurons did not show relationships to value, movement direction, or visual stimulus features. Choice-predictive activity in some amygdala neurons was preceded by transient periods of value coding, suggesting value-to-choice transitions and resembling decision processes in other brain systems. These findings suggest that the amygdala might play an active role in economic decisions. Current views of amygdala function should be extended to incorporate a role in decision-making beyond valuation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503170 | PMC |
http://dx.doi.org/10.1073/pnas.1212706109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!