Magnesium ions (Mg(2+)) are essential for life, but the mechanisms regulating their transport into and out of cells remain poorly understood. The CorA-Mrs2-Alr1 superfamily of Mg(2+) channels represents the most prevalent group of proteins enabling Mg(2+) ions to cross membranes. Thermotoga maritima CorA (TmCorA) is the only member of this protein family whose complete 3D fold is known. Here, we report the crystal structure of a mutant in the presence and absence of divalent ions and compare it with previous divalent ion-bound TmCorA structures. With Mg(2+) present, this structure shows binding of a hydrated Mg(2+) ion to the periplasmic Gly-Met-Asn (GMN) motif, revealing clues of ion selectivity in this unique channel family. In the absence of Mg(2+), TmCorA displays an unexpected asymmetric conformation caused by radial and lateral tilts of protomers that leads to bending of the central, pore-lining helix. Molecular dynamics simulations support these movements, including a bell-like deflection. Mass spectrometric analysis confirms that major proteolytic cleavage occurs within a region that is selectively exposed by such a bell-like bending motion. Our results point to a sequential allosteric model of regulation, where intracellular Mg(2+) binding locks TmCorA in a symmetric, transport-incompetent conformation and loss of intracellular Mg(2+) causes an asymmetric, potentially influx-competent conformation of the channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503211PMC
http://dx.doi.org/10.1073/pnas.1209018109DOI Listing

Publication Analysis

Top Keywords

sequential allosteric
8
mg2+
8
intracellular mg2+
8
structural asymmetry
4
asymmetry magnesium
4
magnesium channel
4
channel cora
4
cora points
4
points sequential
4
allosteric regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!