Molecular dynamics simulations show that the desolvation rates of isotopes of Li(+), K(+), Rb(+), Ca(2+), Sr(2+), and Ba(2+) may have a relatively strong dependence on the metal cation mass. This inference is based on the observation that the exchange rate constant, k(wex), for water molecules in the first hydration shell follows an inverse power-law mass dependence (k(wex) ∝ m(-γ)), where the coefficient γ is 0.05 ± 0.01 on average for all cations studied. Simulated water-exchange rates increase with temperature and decrease with increasing isotopic mass for each element. The magnitude of the water-exchange rate is different for simulations run using different water models [i.e., extended simple point charge (SPC/E) vs. four-site transferrable intermolecular potential (TIP4P)]; however, the value of the mass exponent γ is the same. Reaction rate theory calculations predict mass exponents consistent with those determined via molecular dynamics simulations. The simulation-derived mass dependences imply that solids precipitating from aqueous solution under kinetically controlled conditions should be enriched in the light isotopes of the metal cations relative to the solutions, consistent with measured isotopic signatures in natural materials and laboratory experiments. Desolvation effects are large enough that they may be a primary determinant of the observed isotopic fractionation during precipitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503222 | PMC |
http://dx.doi.org/10.1073/pnas.1208184109 | DOI Listing |
J Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, Princeton University, Princeton, NJ 08544.
Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China.
NAFLD is one of the most common and rapidly increasing liver diseases. Procyanidin C1 and procyanidin C2, B-type trimeric procyanidins, show beneficial effects on regulating lipid metabolism. However, the mechanism underlying these effects remain elusive.
View Article and Find Full Text PDFMol Divers
January 2025
School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
Cancer, a leading global cause of death, presents considerable treatment challenges due to resistance to conventional therapies like chemotherapy and radiotherapy. Cyclin-dependent kinase 11 (CDK11), which plays a pivotal role in cell cycle regulation and transcription, is overexpressed in various cancers and is linked to poor prognosis. This study focused on identifying potential inhibitors of CDK11 using computational drug discovery methods.
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Mathematics, Vivekananda College, Kolkata, West Bengal, 700063, India.
The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!