The worldwide glycerol stocks are increasing; to make the biodiesel industry sustainable economically, this chemical could be used as a secondary primary raw material. Electric energy or hydrogen and added-value-chemical cogeneration becomes more and more an important research topic for increasing economical and industrial interests towards electrochemical technologies. Studies on glycerol electrooxidation for fuel or electrolysis cell applications are scarce. The valorisation of glycerol is generally performed by organic chemistry reactions forming, for example, esters, glycerol carbonates, ethers, acetals or ketals. Glycerol oxidation is made up of complex pathway reactions that can produce a large number of useful intermediates or valuable fine chemicals with presently limited market impact due to expensive production processes. Many of these chemical oxidation routes lead to significant amounts of undesired by-products, and enzymatic processes are limited. Converse to classical heterogeneous processes, electrocatalytic oxidation processes can be tuned by controlling the nature, composition and structure of the electrocatalyts as well as the electrode potential. Such control may lead to very high selectivity and activity, avoiding or limiting product separation steps. The coupling of glycerol oxidation to produce chemicals with the oxygen reduction reaction in a fuel cell or water reduction reaction in an electrolysis cell on Pt-free catalysts results either in coproduction of electrical energy or hydrogen for energy storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201200335 | DOI Listing |
Foods
December 2024
Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA.
Due to their inability to biodegrade, petroleum-based plastics pose significant environmental challenges by disrupting aquatic, marine, and terrestrial ecosystems. Additionally, the widespread presence of microplastics and nanoplastics induces serious health risks for humans and animals. These pressing issues create an urgent need for designing and developing eco-friendly, biodegradable, renewable, and non-toxic plastic alternatives.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain.
Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO semiconductors were synthesized using leaves as templates. Then, g-CN was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol.
View Article and Find Full Text PDFMolecules
November 2024
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
This study explored the preparation of pure silica KIT-6, as well as KIT-6 materials with an enhanced concentration of surface OH groups through aluminum incorporation or NHF treatment. These materials with various contents of surface OH groups were subsequently modified via the post-synthesis grafting of sulfonic groups using 3-mercaptopropyltrimethoxysilane as a precursor, followed by oxidation to introduce acidic sites. The catalysts were thoroughly characterized using XRD, nitrogen adsorption/desorption, SEM-EDS, TEM, and FT-IR techniques to confirm their structural and chemical properties.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2024
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address:
Chemosphere
December 2024
Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt.
While the industrial sectors have recently focused on producing bioplastic materials, the utilization of edible feedstocks and the generation of wastes and byproducts during the bioplastic synthesis process might delay achieving the environmental sustainability strategy. To overcome these limitations related to bioplastic industrialization, this study focuses on synthesizing bioplastics from waste sources, followed by recycling its end-of-life (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!