Electrochemical valorisation of glycerol.

ChemSusChem

IC2 MP, UMR 7285 CNRS, Université de Poitiers, 4 Rue Michel Brunet, B 27, 86022 Poitiers Cedex, France.

Published: November 2012

The worldwide glycerol stocks are increasing; to make the biodiesel industry sustainable economically, this chemical could be used as a secondary primary raw material. Electric energy or hydrogen and added-value-chemical cogeneration becomes more and more an important research topic for increasing economical and industrial interests towards electrochemical technologies. Studies on glycerol electrooxidation for fuel or electrolysis cell applications are scarce. The valorisation of glycerol is generally performed by organic chemistry reactions forming, for example, esters, glycerol carbonates, ethers, acetals or ketals. Glycerol oxidation is made up of complex pathway reactions that can produce a large number of useful intermediates or valuable fine chemicals with presently limited market impact due to expensive production processes. Many of these chemical oxidation routes lead to significant amounts of undesired by-products, and enzymatic processes are limited. Converse to classical heterogeneous processes, electrocatalytic oxidation processes can be tuned by controlling the nature, composition and structure of the electrocatalyts as well as the electrode potential. Such control may lead to very high selectivity and activity, avoiding or limiting product separation steps. The coupling of glycerol oxidation to produce chemicals with the oxygen reduction reaction in a fuel cell or water reduction reaction in an electrolysis cell on Pt-free catalysts results either in coproduction of electrical energy or hydrogen for energy storage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201200335DOI Listing

Publication Analysis

Top Keywords

valorisation glycerol
8
energy hydrogen
8
electrolysis cell
8
glycerol oxidation
8
reduction reaction
8
glycerol
7
electrochemical valorisation
4
glycerol worldwide
4
worldwide glycerol
4
glycerol stocks
4

Similar Publications

Due to their inability to biodegrade, petroleum-based plastics pose significant environmental challenges by disrupting aquatic, marine, and terrestrial ecosystems. Additionally, the widespread presence of microplastics and nanoplastics induces serious health risks for humans and animals. These pressing issues create an urgent need for designing and developing eco-friendly, biodegradable, renewable, and non-toxic plastic alternatives.

View Article and Find Full Text PDF

Valorization of Selected Biomass-Derived Molecules on Leaves-Biotemplated TiO-g-CN Photocatalysts.

Biomimetics (Basel)

November 2024

Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain.

Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO semiconductors were synthesized using leaves as templates. Then, g-CN was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol.

View Article and Find Full Text PDF

This study explored the preparation of pure silica KIT-6, as well as KIT-6 materials with an enhanced concentration of surface OH groups through aluminum incorporation or NHF treatment. These materials with various contents of surface OH groups were subsequently modified via the post-synthesis grafting of sulfonic groups using 3-mercaptopropyltrimethoxysilane as a precursor, followed by oxidation to introduce acidic sites. The catalysts were thoroughly characterized using XRD, nitrogen adsorption/desorption, SEM-EDS, TEM, and FT-IR techniques to confirm their structural and chemical properties.

View Article and Find Full Text PDF

Efficient electrocatalysis conversion of glycerol to formate in alkaline solution by nickel (oxy)hydroxide supported cobalt nanoneedle arrays.

J Colloid Interface Sci

November 2024

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address:

Article Synopsis
  • - This study explores using electrochemical oxidation of glycerol as a sustainable method to create valuable chemicals while improving energy efficiency in electrolysis.
  • - A novel catalyst, CoNA-NiOH/NF-2, utilizing nickel (oxy)hydroxide supported cobalt nanoneedle arrays, shows enhanced performance in glycerol oxidation by increasing active sites and reducing energy consumption.
  • - The catalyst achieves significant results with low voltages for current densities—demonstrating a 98% Faraday efficiency for formate production—offering a promising alternative to conventional oxygen evolution reactions (OER) in renewable energy applications.
View Article and Find Full Text PDF

While the industrial sectors have recently focused on producing bioplastic materials, the utilization of edible feedstocks and the generation of wastes and byproducts during the bioplastic synthesis process might delay achieving the environmental sustainability strategy. To overcome these limitations related to bioplastic industrialization, this study focuses on synthesizing bioplastics from waste sources, followed by recycling its end-of-life (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!