Nitric oxide (NO) is an important physiological signaling molecule. However, when produced in excessive amounts, NO can also have toxic effects. The aim of this study is to investigate the effects of exogenous- and endogenous-derived NO on oxidative modifications of proteins and apoptosis in activated platelets. Washed platelets were incubated with L-arginine or nitroso-glutathione (GSNO) in the presence of adenosine diphosphate (ADP). After incubation, caspase-3 activity, phosphatidylserine (PS) externalization and the potential of mitochondrial membrane as markers of apoptosis were measured. In addition, the alterations in protein carbonylation (PCO) and nitrotyrosine (NT) formation as markers of protein oxidation were examined. Platelet activation with ADP (20 µM) significantly increased PCO and NT levels and apoptotic events. After incubation with L-arginine, platelet NO production increased significantly. This L-arginine-induced increase caused decreases in formerly increased PCO and NT levels associated with ADP-induced platelet activation. Stimulation of NO production with L-arginine protected platelets from apoptosis. GSNO caused an increase in protein NT levels. Despite this change, GSNO was effective in inhibition of P-selectin expression, platelet aggregation, protein carbonylation and apoptosis. The results suggest that L-arginine and GSNO-mediated NO leads to the inhibition of key apoptotic processes including caspase-3 activation, PS exposure and low mitochondrial membrane potential in washed platelets. The inhibitory effect of platelet clearance of L-arginine and GSNO may be a novel useful therapeutic property in clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0960327112455673DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
washed platelets
8
mitochondrial membrane
8
protein carbonylation
8
platelet activation
8
increased pco
8
pco levels
8
apoptosis
5
protein
5
platelets
5

Similar Publications

Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. We report analyses of rare variants that impact birth weight when carried by either fetus or mother, using whole exome sequencing data in up to 234,675 participants. Rare protein-truncating and deleterious missense variants are collapsed to perform gene burden tests.

View Article and Find Full Text PDF

Inhibition of Melanin Synthesis and Inflammation by Exosomes Derived from DB-14 Isolated from Flower.

J Microbiol Biotechnol

January 2025

Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.

is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .

View Article and Find Full Text PDF

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

Background/aims: Hepatocellular carcinoma (HCC) is a malignant cancer with an increasing incidence worldwide. Although numerous efforts have been made to identify effective therapies for HCC, current strategies have limitations. We present a new approach for targeting L-arginine and argininosuccinate synthetase 1 (ASS1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!