A novel polynitro cage compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15-pentaazaheptacyclo [5.5.1.1(3,11).1(5,9)]pentadecane(PNTOPAHP) has been designed and investigated at the DFT-B3LYP/6-31(d) level. Properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure have been predicted. This compound is most likely to crystallize in C2/c space group, and the corresponding cell parameters are Z = 8, a = 29.78 Å, b = 6.42 Å, c = 32.69 Å, α = 90.00°, β = 151.05°, γ = 90.00° and ρ = 1.94 g/cm(3). In addition, the detonation velocity and pressure have also been calculated by the empirical Kamlet-Jacobs equation. As a result, the detonation velocity and pressure of this compound are 9.82 km/s, 44.67 GPa, respectively, a little higher than those of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane(TEX, 9.28 km/s, 40.72 GPa). This compound has a comparable chemical stability to TEX, based on the N-NO(2) trigger bond length analysis. The bond dissociation energy ranges from 153.09 kJ mol(-1) to 186.04 kJ mol(-1), which indicates that this compound meets the thermal stability requirement as an exploitable HEDM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-012-1629-3DOI Listing

Publication Analysis

Top Keywords

cage compound
8
detonation velocity
8
velocity pressure
8
compound
6
theoretical investigation
4
investigation novel
4
novel high
4
high density
4
density cage
4
compound 48111415-pentanitro-26913-tetraoxa-48111415-pentaazaheptacyclo[5511311159]
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!