Introduction: Cholestasis leads to liver cell death, fibrosis, cirrhosis, and eventually liver failure. Bile duct ligated rats constitute an interesting model to study the mechanism of cholestasis, and its action on several organs and tissues, including the brain.
Aim: To analyze brain bile acids individually in ligated rats to evaluate if its profile is altered towards a more toxic condition in cholestasis.
Material And Methods: Male Wistar rats were used and separated in two groups: bile duct ligated rats and sham operated rats (n = 5 in each group). Bile acid profile was assessed in brain homogenates. Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase determinations, bilirubin and ammonia plasma concentration were also measured in both groups.
Results: Although the total amount of bile acids in control animal brains showed a higher concentration than in bile duct ligated rats, the bile acid profile in this group was found more toxic composition than in controls. Lithocholic acid was present in brain in higher concentration (87.4 % of total brain bile acids) in ligated rats and absent in controls. Alkaline phosphatase, bilirubin and ammonia were significantly higher in bile duct ligated rats than in control group.
Conclusion: It was found a toxic brain bile acid profile during hepatic cholestasis which could be one of the explanations of hepatic encephalopathy observed in cholestatic diseases.
Download full-text PDF |
Source |
---|
BMC Cardiovasc Disord
December 2024
Jiangxi University of Chinese Medicine, Jiangxi, China.
Background: Qi Li Qiang Xin (QLQX) capsule has a solid theoretical basis and clinical efficacy in the treatment of chronic heart failure; however, the underlying mechanisms remain obscure. This study was designed to determine the effect of the QLQX on the treatment of heart failure and delineate the underlying mechanisms via a nontargeted metabolomics and lipidomics approach.
Methods: A rat model of heart failure after myocardial infarction (MI) was established via permanent ligation of the anterior descending branch of the left coronary artery.
Int Immunopharmacol
December 2024
Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China; School of Clinical Medicine, Jining Medical University, Jining, China; Institute of Oral Basic Research, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University. Electronic address:
Diabetes exacerbates the occurrence and severity of periodontitis, the pathogenesis of diabetic periodontitis (DPD) is influenced by the delayed resolution of inflammation. Eldecalcitol (ED-71) has shown promise in preventing bone loss in DPD. We herein aimed to investigate the role of ED-71 in the inflammatory regression phase of DPD and elucidate the underlying mechanisms.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China. Electronic address:
Oral delivery of macromolecular drugs is often hampered by the harsh gastrointestinal environment, which makes the drugs have poor bioavailability. Insulin, the most used drug for diabetes, also faces the same challenge for oral administration. Hence, we decorated microbial metabolite propionate on chitosan (CS) to fabricate insulin-loaded propionate-modified CS hydrogel nanoparticles (IN-CS/PA HNPs).
View Article and Find Full Text PDFDrug Des Devel Ther
December 2024
Department of Cardiology, Guang Anmen Hospital, Beijing, People's Republic of China.
Background: Improving angiogenesis in the ischemic myocardium is a therapeutic strategy for preventing, reducing, and repairing myocardial injury of coronary artery disease (CAD). saponins (PNS) have been widely used in the clinical treatment of cardiovascular diseases, demonstrating excellent efficacy, and can potentially improve angiogenesis in the ischemic myocardium. However, the effects of PNS on angiogenesis and its underlying mechanism of action remain unclear.
View Article and Find Full Text PDFCell Signal
December 2024
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:
Through bioinformatics screening, we previously found that AlkB homolog 5 (ALKBH5) expression, an mA demethylase, was higher in patients with heart failure than in the normal population. This study aimed to investigate the molecular mechanisms by which ALKBH5 regulates heart failure. We established a myocardial infarction (MI)-induced heart failure model in rats in vivo and an in vitro hypoxia model using rat primary cardiac fibroblasts (RCFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!