Type I IFN receptor controls activated TYK2 in the nucleus: implications for EAE therapy.

J Neuroimmunol

Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, United States.

Published: January 2013

Recent studies have suggested that activated wild-type and mutant Janus kinase JAK2 play a role in the epigenetics of histone modification, where it phosphorylates histone H3 on tyrosine 41(H3pY41). We showed that type I IFN signaling involves activated TYK2 in the nucleus. ChIP-PCR demonstrated the presence of receptor subunits IFNAR1 and IFNAR2 along with TYK2, STAT1, and H3pY41 specifically at the promoter of the OAS1 gene in IFN treated cells. A complex of IFNAR1, TYK2, and STAT1α was also shown in the nucleus by immunoprecipitation. IFN treatment was required for TYK2 activation in the nucleus. The presence of IFNAR1, IFNAR2, and activated STAT1 and STAT2, as well as the type I IFN in the nucleus of treated cells was confirmed by the combination of Western blotting and confocal microscopy. Trimethylated histone H3 lysine 9 underwent demethylation and subsequent acetylation specifically in the region of the OAS1 promoter. Resultant N-terminal truncated IFN mimetics functioned intracellularly as antivirals as well as therapeutics against experimental allergic encephalomyelitis without the undesirable side effects that limit the therapeutic efficacy of IFNβ in treatment of multiple sclerosis. The findings indicate that IFN signaling is complex like that of steroid signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534922PMC
http://dx.doi.org/10.1016/j.jneuroim.2012.10.006DOI Listing

Publication Analysis

Top Keywords

type ifn
12
activated tyk2
8
tyk2 nucleus
8
ifn signaling
8
ifnar1 ifnar2
8
treated cells
8
ifn
6
tyk2
5
nucleus
5
ifn receptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!