Erythrocyte pyruvate kinase deficiency mutation identified in multiple breeds of domestic cats.

BMC Vet Res

Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.

Published: October 2012

Background: Erythrocyte pyruvate kinase deficiency (PK deficiency) is an inherited hemolytic anemia that has been documented in the Abyssinian and Somali breeds as well as random bred domestic shorthair cats. The disease results from mutations in PKLR, the gene encoding the regulatory glycolytic enzyme pyruvate kinase (PK). Multiple isozymes are produced by tissue-specific differential processing of PKLR mRNA. Perturbation of PK decreases erythrocyte longevity resulting in anemia. Additional signs include: severe lethargy, weakness, weight loss, jaundice, and abdominal enlargement. In domestic cats, PK deficiency has an autosomal recessive mode of inheritance with high variability in onset and severity of clinical symptoms.

Results: Sequence analysis of PKLR revealed an intron 5 single nucleotide polymorphism (SNP) at position 304 concordant with the disease phenotype in Abyssinian and Somali cats. Located 53 nucleotides upstream of the exon 6 splice site, cats with this SNP produce liver and blood processed mRNA with a 13 bp deletion at the 3' end of exon 5. The frame-shift mutation creates a stop codon at amino acid position 248 in exon 6. The frequency of the intronic SNP in 14,179 American and European cats representing 38 breeds, 76 western random bred cats and 111 cats of unknown breed is 6.31% and 9.35% when restricted to the 15 groups carrying the concordant SNP.

Conclusions: PK testing is recommended for Bengals, Egyptian Maus, La Perms, Maine Coon cats, Norwegian Forest cats, Savannahs, Siberians, and Singapuras, in addition to Abyssinians and Somalis as well an any new breeds using the afore mentioned breeds in out crossing or development programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534511PMC
http://dx.doi.org/10.1186/1746-6148-8-207DOI Listing

Publication Analysis

Top Keywords

pyruvate kinase
12
cats
10
erythrocyte pyruvate
8
kinase deficiency
8
domestic cats
8
abyssinian somali
8
random bred
8
breeds
5
deficiency
4
deficiency mutation
4

Similar Publications

ATP Regeneration from Pyruvate in the PURE System.

ACS Synth Biol

January 2025

Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.

The "Protein synthesis Using Recombinant Elements" ("PURE") system is a minimal biochemical system capable of carrying out cell-free protein synthesis using defined enzymatic components. This study extends PURE by integrating an ATP regeneration system based on pyruvate oxidase, acetate kinase, and catalase. The new pathway generates acetyl phosphate from pyruvate, phosphate, and oxygen, which is used to rephosphorylate ATP .

View Article and Find Full Text PDF

Humans have, throughout history, faced periods of starvation necessitating increased physical effort to gather food. To explore adaptations in muscle function, 13 participants (7 males and 6 females) fasted for seven days. They lost 4.

View Article and Find Full Text PDF

Key enzymatic activities and metabolic pathway dynamics in acidogenic fermentation of food waste: Impact of pH and organic loading rate.

J Environ Manage

December 2024

College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China. Electronic address:

Acidogenic fermentation was an effective technology to recover volatile fatty acids (VFAs) ethanol and lactic acid from food wastes (FW) as bioresources. However, the impact of process controls on key functional enzymes and metabolic pathways has been inadequately understood. In this study, the metabolite distribution, key functional enzymes and metabolic pathways were completely elucidated using 16S rRNA gene high-throughput sequencing combined with PICRUSt2.

View Article and Find Full Text PDF

Identification of a selective pyruvate dehydrogenase kinase 1 (PDHK1) chemical probe by virtual screening.

Eur J Med Chem

December 2024

Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA. Electronic address:

PDHK1 is a non-canonical Ser/Thr kinase that negatively regulates the pyruvate dehydrogenase complex (PDC), restricting entry of acetyl-CoA into the tricarboxylic acid (TCA) cycle and downregulating oxidative phosphorylation. In many glycolytic tumors, PDHK1 is overexpressed to suppress activity of the PDC and cause a shift in metabolism toward an increased reliance on glycolysis (the Warburg effect). Genetic studies have shown that knockdown or knockout of PDHK1 reverts this phenotype and inhibits tumor growth in vitro and in vivo, but chemical tools to pharmacologically validate and build upon these data are lacking.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how somatic mitochondrial DNA mutations influence the development of leukemia, specifically through experiments with hematopoietic progenitor cells (HPCs) from genetically modified mice.
  • Researchers found that recipients of heterozygous mtDNA mutator HPCs had a higher spontaneous leukemia incidence, while homozygous mtDNA mutator HPCs had a lower incidence when combined with NMyc overexpression.
  • Both types of HPCs exhibited mitochondrial function impairments, but only heterozygous HPCs adapted to the metabolic demands of NMyc overexpression, as demonstrated by altered glucose utilization linked to metabolic changes in homozygous HPCs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!