Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1745-6584.2012.01006.x | DOI Listing |
Sensors (Basel)
January 2025
School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China.
Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Civil Engineering Department, Polytechnic School, University of Sao Paulo, São Paulo 05508-220, Brazil.
Using fiber optics as a tool for different kinds of geotechnical monitoring can be highly attractive and cost-effective when compared to conventional instruments, such as piezometers and inclinometers, among others. A single fiber optic cable may cover a larger monitoring area compared to conventional instrumentation and allows for monitoring more than one physical quantity with the same fiber optic cable. The literature provides several different examples of distributed fiber optic systems usage.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
Water pipelines in water diversion projects can leak, leading to soil deformation and ground subsidence, necessitating research into soil deformation monitoring technology. This study conducted model tests to monitor soil deformation around leaking buried water pipelines using distributed fiber optic strain sensing (DFOSS) technology based on optical frequency domain reflectometry (OFDR). By arranging strain measurement fibers in a pipe-soil model, we investigated how leak location, leak size, pipe burial depth, and water flow velocity affect soil strain field monitoring results.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy & Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Division of Ophthalmology, Department of Special Surgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
: Amblyopia is a condition where children undergo unilateral or bilateral vision loss due to a variety of disorders that impact the visual pathway. The assessment of retinal nerve fiber layer (RNFL) thickness in amblyopia has made optical coherence tomography (OCT) a useful technique for studying the pathophysiology of this condition. This study was conducted to assess OCT results for various forms of amblyopia, including macular thickness and peripapillary RNFL thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!