Legionella pneumophila is a waterborne pathogen that has been isolated sporadically from drinking water distribution systems (DWDS). Resistance to disinfectants is mainly attributed to the association of cells with amoebae, but biofilms are also thought to provide some degree of protection. In the present work, a two-stage chemostat was used to form heterotrophic biofilms from drinking water to study the influence of chlorine on the presence of naturally occurring L. pneumophila. The pathogen was tracked in planktonic and sessile biofilm phases using standard culture recovery techniques for cultivable cells and a peptide nucleic acid fluorescence in situ hybridisation assay for total cells. The results showed that the total number of L. pneumophila cells in biofilms was not affected by the concentrations of chlorine tested, and the presence of L. pneumophila could not be detected by culturing. To restrict the outbreaks of disease caused by this bacterium, efforts need to be concentrated on preventing L. pneumophila from re-entering an infectious state by maintaining residual disinfectant levels through the entire DWDS network so that the resuscitation of cells via contact with amoebae is prevented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927010902803305 | DOI Listing |
BMC Pulm Med
January 2025
Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China.
Background: Legionella pneumophila is an uncommon pathogen causing community-acquired atypical pneumonia. Acinetobacter baumannii is a major pathogen responsible for hospital-acquired pneumonia, but it rarely causes serious infections in a community setting. Without prompt and appropriate treatments, infection from either of these two pathogens can cause a high mortality rate.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
January 2025
Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland. Electronic address:
Background: Although antimicrobial resistance has not yet emerged as an overarching problem for Legionella pneumophila (Lp) infection, the description of clinical and environmental strains resistant to fluoroquinolones and macrolides is a cause of concern. This study aimed to investigate the antimicrobial susceptibility of Lp human isolates in Italy.
Methods: A total of 204 Lp clinical isolates were tested for sensitivity to nine antibiotics using the broth microdilution assay (BMD).
Environ Microbiol
January 2025
Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.
View Article and Find Full Text PDFMicroorganisms
December 2024
School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
Multiple human and plant pathogens are dispersed and transmitted as bioaerosols (e.g., , SARS-CoV-2, , , spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!