Aims: The genes involved in choline transport and oxidation to glycine betaine in the biopesticidal bacterium Serratia entomophila were characterized, and the potential of osmoprotectants, coupled with increased NaCl concentrations, to improve the desiccation tolerance of this species was investigated.
Methods And Results: Serratia entomophila carries sequences similar to the Escherichia coli betTIBA genes encoding a choline transporter and dehydrogenase, a betaine aldehyde dehydrogenase and a regulatory protein. Disruption of betA abolished the ability of Ser. entomophila to utilize choline as a carbon source. Quantitative reverse-transcriptase PCR analysis revealed that betA transcription was reduced compared to that of the upstream genes in the operon, and that NaCl and choline induced bet gene expression. Glycine betaine and choline increased the NaCl tolerance of Ser. entomophila, and osmotically preconditioned cultures survived better than control cultures following desiccation and immediately after application to agricultural soil.
Conclusions: Addition of glycine betaine and NaCl to growth medium can greatly enhance the desiccation survival of Ser. entomophila, and its initial survival in soil.
Significance And Impact Of The Study: Serratia entomophila is sensitive to desiccation and does not persist under low soil moisture conditions. Techniques described here for enhancing the desiccation survival of Ser. entomophila can be used to improve formulations of this bacterium, and allow its application under a wider range of environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.12052 | DOI Listing |
Sci Total Environ
October 2024
Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Microbial degradation is an important solution for antibiotic pollution in livestock and poultry farming wastes. This study reports the isolation and identification of the novel bacterial strain Serratia entomophila TC-1, which can degrade 87.8 % of 200 mg/L tetracycline (TC) at 35 °C, pH 6.
View Article and Find Full Text PDFFront Microbiol
October 2023
Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of , the virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of .
View Article and Find Full Text PDFBMC Genomics
October 2022
Bio-Protection Research Centre, Lincoln University, Lincoln, Christchurch, New Zealand.
Background: Isolates of Serratia entomophila and S. proteamaculans (Yersiniaceae) cause disease specific to the endemic New Zealand pasture pest, Costelytra giveni (Coleoptera: Scarabaeidae). Previous genomic profiling has shown that S.
View Article and Find Full Text PDFMicrobiol Spectr
October 2021
Curtin Universitygrid.1032.0, Centre for Crop and Disease Management, School of Molecular and Life, Bentley, Western Australia, Australia.
The grass grub endemic to New Zealand, Costelytra giveni (Coleoptera: Scarabaeidae), and the manuka beetle, Pyronota festiva and P. setosa (Coleoptera: Scarabaeidae), are prevalent pest species. Through assessment of bacterial strains isolated from diseased cadavers of these insect species, 19 insect-active Serratia proteamaculans variants and a single Serratia entomophila strain were isolated.
View Article and Find Full Text PDFJ Bacteriol
September 2021
Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.
The antifeeding prophage (Afp) produced by the bacterium Serratia entomophila is the archetypical external contractile injection system (eCIS). Afp and its orthologues are characterized by three sheath proteins, while contractile bacteriophages and pyocins encode only one. Using targeted mutagenesis, transmission electron microscopy (TEM), and pulldown studies, we interrogated the roles of the three sheath proteins (Afp2, Afp3, and Afp4) in Afp assembly, in particular the interaction between the two sequence-related helical-sheath-forming proteins Afp2 and Afp3 and their cross talk with the tail termination sheath capping protein (TrP) Afp16 in the sheath maturation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!