Siamese mud carp (Henichorynchus siamensis) is a freshwater teleost of high economic importance in the Mekong River Basin. However, genetic data relevant for delineating wild stocks for management purposes currently are limited for this species. Here, we used 454 pyrosequencing to generate a partial genome survey sequence (GSS) dataset to develop simple sequence repeat (SSR) markers from H. siamensis genomic DNA. Data generated included a total of 65,954 sequence reads with average length of 264 nucleotides, of which 2.79% contain SSR motifs. Based on GSS-BLASTx results, 10.5% of contigs and 8.1% singletons possessed significant similarity (E value < 10(-5)) with the majority matching well to reported fish sequences. KEGG analysis identified several metabolic pathways that provide insights into specific potential roles and functions of sequences involved in molecular processes in H. siamensis. Top protein domains detected included reverse transcriptase and the top putative functional transcript identified was an ORF2-encoded protein. One thousand eight hundred and thirty seven sequences containing SSR motifs were identified, of which 422 qualified for primer design and eight polymorphic loci have been tested with average observed and expected heterozygosity estimated at 0.75 and 0.83, respectively. Regardless of their relative levels of polymorphism and heterozygosity, microsatellite loci developed here are suitable for further population genetic studies in H. siamensis and may also be applicable to other related taxa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472715 | PMC |
http://dx.doi.org/10.3390/ijms130910807 | DOI Listing |
Neurol Genet
December 2024
From the Division of Neurology (A.H.T., S.-Y.L.), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Programa de Pós-Graduação em Ciências Médicas da Universidade Federal do Rio Grande do Sul (P.S.-A.), Clínica Santa María, Santiago, Chile; Departamento de Farmacologia (A.F.S.S.), Universidade Federal do Rio Grande do Sul; Serviço de Neurologia (A.F.S.S.), Hospital de Clínicas de Porto Alegre, Brazil; Institute of Neurogenetics (H.M., M.L.D., C.K.), University of Lübeck, Germany; Department of Biomedical Science (A.A.-A.), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; The Michael J. Fox Foundation for Parkinson's Research (J.S., B.F.), New York; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neuroscience and Brain Health (M.L.D.), Metropolitan Medical Center, Manila, Philippines; Centre for Preventive Neurology (S.D., M.T.P., A.J.N.), Wolfson Institute of Population Health, Queen Mary University of London, United Kingdom; Unidad de Trastornos del Movimiento (M.T.P.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Laboratory of Neurogenetics (M.B.M.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Department of Clinical and Movement Neurosciences (M.B.M., H.R.M.), UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York; Movement Disorders Division (R.N.A.), Neurological Institute, Tel Aviv Sourasky Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Israel; Molecular Medicine Laboratory and Neurology Department (K.R.K.), Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney; Translational Neurogenomics Group (K.R.K.), Genomic and Inherited Disease Program, Garvan Institute of Medical Research; and St Vincent's Healthcare Campus (K.R.K.), Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia.
Background And Objectives: In the era of precision medicine, genetic test results have become increasingly relevant in the care of patients with Parkinson disease (PD). While large research consortia are performing widespread research genetic testing to accelerate discoveries, debate continues about whether, and to what extent, the results should be returned to patients. Ethically, it is imperative to keep participants informed, especially when findings are potentially actionable.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
Background: Individuals often respond differently to medications, giving rise to the field of precision medicine (PM), which focuses on tailoring treatments to individual genetic, environmental, and lifestyle factors. This study examined the level of comfort healthcare professional students have with their knowledge of precision medicine, alongside their attitudes and perceptions toward precision medicine, at a tertiary institution in Nigeria.
Methods: A cross-sectional questionnaire-based study was conducted among healthcare professional students (400-600 level) at the University of Nigeria Nsukka between January and March 2024.
FEMS Microbiol Lett
January 2025
Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria.
Terminal olefins are important platform chemicals, drop-in compatible hydrocarbons and also play an important role as biocontrol agents of plant pathogens. Currently, 1-alkenes are derived from petroleum, although microbial biosynthetic routes are known. Jeotgalicoccus sp.
View Article and Find Full Text PDFTerritorial aggression is widespread across the animal kingdom and is expressed in diverse ecological and social contexts. In addition, there are marked variations in the degree of male reproductive territoriality within and between species. These differences are often attributed to genetic components.
View Article and Find Full Text PDFJ Med Ultrasound
November 2024
Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan.
Amniotic fluid assessment is crucial in prenatal ultrasound to monitor fetal conditions, with polyhydramnios, characterized by excessive amniotic fluid, affecting 1%-2% of pregnancies. Polyhydramnios is linked to complications such as placental abruption, preterm labor, congenital anomalies, and postpartum hemorrhage, emphasizing the need for early detection and management. While idiopathic causes account for 60%-70% of cases, other causes include impaired fetal swallowing and increased urine production due to maternal, fetal, and placental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!