Micropatterned polymer-supported membranes (PSM) are established as a tool for confining the diffusion of transmembrane proteins for single molecule studies. To this end, a photochemical surface modification with hydrophobic tethers on a PEG polymer brush is implemented for capturing of lipid vesicles and subsequent fusion. Formation of contiguous membranes within micropatterns is confirmed by scanning force microscopy, fluorescence recovery after photobleaching (FRAP), and super-resolved single-molecule tracking and localization microscopy. Free diffusion of transmembrane proteins reconstituted into micropatterned PSM is demonstrated by FRAP and by single-molecule tracking. By exploiting the confinement of diffusion within micropatterned PSM, the diffusion and interaction dynamics of individual transmembrane receptors are quantitatively resolved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201201530 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!