The synthesis of new bischromone derivatives (4a-c and 5a-c) as potential anticancer drugs is described. The difference in the reactivity between 4-oxo-4H-chromene-3-carboxylic acid 2 (or its methyl ester 3) and 4-oxo-4H-chromene-3-carbonyl chloride 1 with three different polyamines: 3,3'-diamino-N-methyldipropylamine (a), 1,4-bis(3-aminopropyl)piperazine (b), 4,9-dioxa-1,12-dodecanediamine (c) resulted in the formation of two different groups of products, compounds 4a-c and 5a-c, designed in agreement with the bisintercalators' structural requirements. The transformation of 4-oxo-4H-chromene-3-carboxylic acid into 2H-chromene-2,4(3H)-diones (5) was confirmed by the NMR and XRD experiments. Compounds 4a and 5a were evaluated in vitro in the highly aggressive melanoma cell line A375. An enhanced induction of apoptosis and cell cycle arrest clearly revealed that compound 5a was more potent than 4a. Compound 5a was also more active in diminishing the adhesive potential of melanoma cells. Current studies support the notion that small changes in the three-dimensional structure of molecules might have a substantial impact on their biological activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.201200220DOI Listing

Publication Analysis

Top Keywords

bischromone derivatives
8
4a-c 5a-c
8
4-oxo-4h-chromene-3-carboxylic acid
8
synthesis biological
4
biological evaluation
4
evaluation bischromone
4
derivatives antiproliferative
4
antiproliferative activity
4
activity synthesis
4
synthesis bischromone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!