Objective: Activated microglia play a central role in the inflammatory and excitotoxic component of various acute and chronic neurological disorders. However, the mechanisms leading to their activation in the latter context are poorly understood, particularly the involvement of N-methyl-D-aspartate receptors (NMDARs), which are critical for excitotoxicity in neurons. We hypothesized that microglia express functional NMDARs and that their activation would trigger neuronal cell death in the brain by modulating inflammation.

Methods And Results: We demonstrate that microglia express NMDARs in the murine and human central nervous system and that these receptors are functional in vitro. We show that NMDAR stimulation triggers microglia activation in vitro and secretion of factors that induce cell death of cortical neurons. These damaged neurons are further shown to activate microglial NMDARs and trigger a release of neurotoxic factors from microglia in vitro, indicating that microglia can signal back to neurons and possibly induce, aggravate, and/or maintain neurologic disease. Neuronal cell death was significantly reduced through pharmacological inhibition or genetically induced loss of function of the microglial NMDARs. We generated Nr1 LoxP(+/+) LysM Cre(+/-) mice lacking the NMDAR subunit NR1 in cells of the myeloid lineage. In this model, we further demonstrate that a loss of function of the essential NMDAR subunit NR1 protects from excitotoxic neuronal cell death in vivo and from traumatic brain injury.

Interpretation: Our findings link inflammation and excitotoxicity in a potential vicious circle and indicate that an activation of the microglial NMDARs plays a pivotal role in neuronal cell death in the perinatal and adult brain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.23626DOI Listing

Publication Analysis

Top Keywords

cell death
24
neuronal cell
20
microglial nmdars
12
activation microglial
8
n-methyl-d-aspartate receptors
8
microglia express
8
loss function
8
nmdar subunit
8
subunit nr1
8
cell
6

Similar Publications

Nicotine, the main toxic component of tobacco, directly or indirectly causes adverse effects on the liver metabolism. Melatonin, secreted by the pineal gland, has anti-apoptotic activity as well as antioxidant activity. The aim of this study was to reveal the antiapoptotic effects of melatonin in rats with experimentally induced chronic liver damage with nicotine.

View Article and Find Full Text PDF

HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.

View Article and Find Full Text PDF

VPO1 Promotes Programmed Necrosis of Cardiomyocytes in Rats with Chronic Heart Failure by Upregulating CYLD.

Front Biosci (Landmark Ed)

December 2024

Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.

Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!