Temperature and ultraviolet B radiation (UVB 290-320 nm) are inextricably linked to global climate change. These two variables may act separately, additively, or synergistically on specific aspects of fish biochemistry. We raised Atlantic Salmon (Salmo salar) parr for 54 days in outdoor tanks held at 12 and 19 °C and, at each temperature, we exposed them to three spectral treatments differing in UV radiation intensity. We quantified individual fatty acid (FA) mass fractions in four tissues (dorsal muscle, dorsal and ventral skin, and ocular tissue) at each temperature × UV combination. FA composition of dorsal muscle and dorsal and ventral skin was not affected by UV exposure. Mass fractions of 16:0, 18:0, and saturated fatty acids (SFA) were greater in dorsal muscle of warm-reared fish whereas 18:3n-3, 20:2, 20:4n-6, 22:5n-3, 22:6n-3, n-3, n-6, polyunsaturated fatty acids (PUFA), and total FA were significantly higher in cold-reared fish. Mass fractions of most of the FA were greater in the dorsal and ventral skin of warm-reared fish. Cold-reared salmon exposed to enhanced UVB had higher ocular tissue mass fractions of 20:2, 20:4n-6, 22:6n-3, n-3, n-6, and PUFA compared to fish in which UV had been removed. These observations forecast a host of ensuing physiological and ecological responses of juvenile Atlantic Salmon to increasing temperatures and UVB levels in native streams and rivers where they mature before smolting and returning to the sea.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11745-012-3719-5DOI Listing

Publication Analysis

Top Keywords

fatty acids
16
mass fractions
16
atlantic salmon
12
dorsal muscle
12
dorsal ventral
12
ventral skin
12
n-3 fatty
8
juvenile atlantic
8
salmon salmo
8
salmo salar
8

Similar Publications

Mitochondrial dysfunction and lipid alterations in primary sclerosing cholangitis.

Scand J Gastroenterol

January 2025

Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.

Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.

Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.

View Article and Find Full Text PDF

Exposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity.

View Article and Find Full Text PDF

Cystine/cysteine is critical for antioxidant response and sulfur metabolism in cancer cells and is one of the most depleted amino acids in the PDAC microenvironment. The effects of cystine limitation stress (CLS) on PDAC progression are poorly understood. Here we report that adaptation to CLS (CLSA) promotes PDAC cell proliferation and tumor growth through translational upregulation of the oxidative pentose phosphate pathway (OxPPP).

View Article and Find Full Text PDF

Excess lipid droplet (LD) accumulation is associated with several pathological states, including Alzheimer's disease (AD). However, the mechanism(s) by which changes in LD composition and dynamics contribute to pathophysiology of these disorders remains unclear. Apolipoprotein E (ApoE) is a droplet associated protein with a common risk variant (E4) that confers the largest increase in genetic risk for late-onset AD.

View Article and Find Full Text PDF

Oligodendrocytes are the myelinating cells of the central nervous system. Regulation of the early stages of oligodendrocyte development is critical to the function of the cell. Specifically, myelin sheath formation is an energetically demanding event that requires precision, as alterations may lead to dysmyelination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!