Baicalein, one of the four major flavanoids extracted from the root of Scutellaria baicalensis, has been shown to exert chemopreventive effect against several cancers, including skin cancer. However, the precise mechanisms remain to be elucidated. In the present study, we investigated the chemopreventive activity of baicalein against 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated skin tumorigenesis in C57BL/6 mice. We found that topical treatment with baicalein resulted in a significant inhibitory effect on DMBA/TPA-mediated tumor promotion. Furthermore, we observed that baicalein suppressed cell proliferation and promoted apoptosis in DMBA/TPA-mediated group. Additionally, pretreatment with baicalein inhibited the production of inflammatory cells in DMBA/TPA-induced skin/tumors. Further experiments showed that baicalein reduced TPA-induced skin hyperplasia as well as infiltration of polymorphonuclear leukocytes in the dermis. In conclusion, our data suggest that baicalein inhibits DMBA/TPA-induced skin tumorigenesis by suppressing proliferation and inflammation and promoting apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-012-9566-yDOI Listing

Publication Analysis

Top Keywords

skin tumorigenesis
12
baicalein
8
baicalein inhibits
8
inhibits dmba/tpa-induced
8
dmba/tpa-induced skin
8
skin
5
tumorigenesis mice
4
mice modulating
4
modulating proliferation
4
proliferation apoptosis
4

Similar Publications

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Molecular Subtypes of Vulvar Squamous Cell Carcinoma: The Significance of HPV-Independent/p53 Wild Type.

Cancers (Basel)

December 2024

Division of Gynecologic, Breast and Perinatal Pathology, Institute of Pathology, University Hospital Leipzig, D-04103 Leipzig, Germany.

Vulvar carcinoma is a rare disease, meeting the criteria for a "rare cancer", but its incidence is increasing, especially in women <60 years of age. Squamous cell carcinoma (VSCC) accounts for the overwhelming majority of vulvar carcinomas and is the focus of this review. As with many cancers, the increased understanding of molecular events during tumorigenesis has led to the emergence of the molecular subclassification of VSCC, which is subclassified into tumors that arise secondary to high-risk human papillomavirus infection (HPV-associated, or HPVa) and those that arise independently of HPV (HPVi), most commonly in the setting of a chronic inflammatory condition of the vulvar skin.

View Article and Find Full Text PDF

Green Tea Catechins and Skin Health.

Antioxidants (Basel)

December 2024

Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China.

Green tea catechins (GTCs) are a group of bioactive polyphenolic compounds found in fresh tea leaves ( (L.) O. Kuntze).

View Article and Find Full Text PDF

Immune cells determine the role of the tumor microenvironment during tumor progression, either suppressing tumor formation or promoting tumorigenesis. We analyzed the profile of immune cells in the tumor microenvironment of control mouse skins and skin tumors at the single-cell level. We identified 15 CD45 immune cell clusters, which broadly represent the most functionally characterized immune cell types including macrophages, Langerhans cells (LC), conventional type 1 dendritic cells (cDC1), conventional type 2 dendritic cells (cDC2), migratory/mature dendritic cells (mDC), dendritic epidermal T cells (DETC), dermal γδ T cells (γδT), T cells, regulatory T cells (Tregs), natural killer cells (NK), type 2 innate lymphoid cells (ILC2), neutrophils (Neu), mast cells (Mast), and two proliferating populations (Prolif.

View Article and Find Full Text PDF

While the genetic paradigm of cancer etiology has proven powerful, it remains incomplete as evidenced by the widening spectrum of non-cancer cell-autonomous "hallmarks" of cancer. Studies have demonstrated the commonplace presence of high oncogenic mutational burdens in homeostatically-stable epithelia. Hence, the presence of driver mutations alone does not result in cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!