Influence of group 10 metals on the growth and subsequent Coulomb explosion of small silicon clusters under strong light pulses.

Chemphyschem

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.

Published: March 2013

Growth and ionization patterns of small silicon clusters are studied using ultrafast pulses centered at 624 nm by varying the metal electron source for cluster formation using group 10 transition metals. The silicon-cluster size was observed to change as the electron source was varied from Pd

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201200708DOI Listing

Publication Analysis

Top Keywords

small silicon
8
silicon clusters
8
electron source
8
influence group
4
group metals
4
metals growth
4
growth subsequent
4
subsequent coulomb
4
coulomb explosion
4
explosion small
4

Similar Publications

Bare silicon dimers on hydrogen-terminated Si(100) have two dangling bonds. These are atomically localized regions of high state density near to and within the bulk silicon band gap. We studied bare silicon dimers as monomeric units.

View Article and Find Full Text PDF

We experimentally demonstrate what we believe to be a novel RF interference mitigation technique using a network of low-loss silicon nitride ring resonators. The rings are used for complex (phase and amplitude) line-by-line shaping of higher-order sidebands from an electro-optic modulator to discriminate large and small RF signal input, thereby achieving strong (30 dB) mitigation of a large signal and virtually no mitigation for small signals.

View Article and Find Full Text PDF

Micro ring resonators (MRR) based evanescent field biosensors have shown excellent potential in medical diagnostics due to their performance, scalability, and ability to integrate multiple sensors in a small area to detect various biomarkers simultaneously. The quest to improve the performance and feature size of such sensors has led to the development of cutting-edge photonic integrated circuits (PIC). However, chip-scale implementation of readout and data analysis still needs to be addressed adequately.

View Article and Find Full Text PDF

Quantum dots (QDs) are promising materials for optoelectronic applications, but their widespread adoption requires controllable, selective, and scalable deposition methods. While traditional methods like spin coating and drop casting are suitable for small-scale deposition onto flat substrates, and ink-jet printing offers precision for small areas, these methods struggle with conformal deposition onto non-planar, large area substrates or selective deposition onto large area chips. Electrophoretic deposition (EPD) is an efficient and versatile technique capable of achieving conformal and selective area deposition over large areas, but its application to QD films has been limited.

View Article and Find Full Text PDF

SiO-Mediated Hydrothermal Synthesis of Spiroffite-Type CoTeO.

Inorg Chem

January 2025

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.

The hydrothermal synthesis of novel materials typically relies on both knowledge of the redox activities of all cations present in the reaction solution and a small toolset of so-called mineralizers to tune the solution's overall chemical potential. Upon the use of a less conventional mineralizer species, SiO, we show the stabilization of spiroffite-type CoTeO under less forceful hydrothermal conditions than those in previous reports. When synthesized in the presence of both SiO and each respective alkali carbonate as a secondary mineralizer, silicon substitution in place of tellurium in the host structure becomes apparent, and the corresponding disorder introduced gives rise to enhanced low-temperature ferromagnetism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!