Mesoporous TiO(2) with a large specific surface area (~150 m(2) g(-1)) is the most successful material in dye-sensitized solar cells so far; however, its inferior charge mobility is a major efficiency limiter. This paper demonstrates that random nanowires of Ni-doped TiO(2) (Ni:TiO(2)) have a dramatic influence on the particulate and charge transport properties. Nanowires (dia ~60 nm) of Ni:TiO(2) with a specific surface area of ~80 m(2) g(-1) were developed by an electrospinning technique. The band gap of the Ni:TiO(2) shifted to the visible region upon doping of 5 at% Ni atoms. The Mott-Schottky analysis shows that the flat band potential of Ni:TiO(2) shifts to a more negative value than the undoped samples. The electrochemical impedance spectroscopic measurements showed that the Ni:TiO(2) offer lower charge transport resistance, higher charge recombination resistance, and enhanced electron lifetime compared to the undoped samples. The dye-sensitized solar cells fabricated using the Ni:TiO(2) nanowires showed an enhanced photoconversion efficiency and short-circuit current density compared to the undoped analogue. The transient photocurrent measurements showed that the Ni:TiO(2) has improved charge mobility compared with TiO(2) and is several orders of magnitude higher compared to the P25 particles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2dt31775cDOI Listing

Publication Analysis

Top Keywords

surface area
12
dye-sensitized solar
12
solar cells
12
random nanowires
8
specific surface
8
charge mobility
8
charge transport
8
undoped samples
8
measurements nitio2
8
compared undoped
8

Similar Publications

Interfacial electromigration for accelerated reactions.

Anal Chim Acta

May 2025

Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX, 77843, USA. Electronic address:

Background: Microdroplets have emerged as effective confined-volume reactors due to their remarkable ability to accelerate chemical reactions compared to bulk systems. Recent research highlights the crucial role of air-liquid interfaces in this acceleration. A microdroplet can be viewed as having two kinetically distinct regions: the interface and the interior.

View Article and Find Full Text PDF

Background: Ambient Mass Spectrometry (AMS) encompasses a group of techniques that have emerged as powerful strategies for direct, in-situ and high-throughput analysis, also in compliance with the principles of green analytical chemistry. Swab Touch Spray-Mass Spectrometry (Swab TS-MS) is a home-made AMS technique that involves the use of a medical swab as sampling tool and electrospray probe. To date, Swab TS-MS has been applied only for the analysis of small molecules, especially in forensic and medical fields, leaving the analysis of peptides and proteins still unexplored.

View Article and Find Full Text PDF

In the present study, magnetic-calcined bamboo composite adsorbents (MCBC200, MCBC400, MCBC600, MCBC800, and MCBC1000) were prepared, and their physicochemical characteristics (scanning electron microscope images, differential thermogravimetric analysis, Fourier transform-IR, specific surface area, surface functional groups, and point of zero charge [pH]) were evaluated. Furthermore, the adsorption capacity of methylene blue (MB, cationic dye) using the prepared adsorbents was assessed. The value of pH and the specific surface area of MCBC400 were 7.

View Article and Find Full Text PDF

Objectives: Due to the severe shortage of donor corneas for transplantation in China, corneal component transplantation may expand the available donor pool. This study aims to evaluate the safety and feasibility of corneal component transplantation by examining the distribution of hepatitis B surface antigen (HBsAg) in corneas from HBsAg-seropositive donors under different storage media.

Methods: Ten corneas (from 6 donors) donated between December 2019 and March 2021 and stored at the Eye Bank of Xiangya Third Hospital, Central South University, were analyzed.

View Article and Find Full Text PDF

Mechanism of the anterior cingulate cortex in sleep regulation.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000.

Sleep disorders refer to conditions characterized by abnormal sleep duration and quality, including insomnia, sleep-disordered breathing, and fragmented sleep, and have become one of the major challenges to modern physical and mental health. The anterior cingulate cortex (ACC) is an important component of the limbic system, located between the cingulate sulcus and the callosal sulcus on the medial surface of the cerebral hemispheres, and plays a critical role in regulating autonomic movements, emotions, and pain. It is an important part of the sleep regulation system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!