Mojave toxin, a heterodimeric, neurotoxic phospholipase complex from Crotalus scutulatus scutulatus, is one of a group of closely related rattlesnake toxins for which much structural information is still lacking. The complete amino-acid sequence of the acidic subunit from Mojave toxin was determined. The three individual peptide chains, derived from the acidic subunit by reductive alkylation, were separated by high-performance liquid chromatography. Fragmentations of the A and B chains were done using specific proteinases and the resulting peptide mixtures were fractionated by reverse-phase high-performance liquid chromatography. Sequence analyses on the intact chains and the fragments from digests were done by automated Edman degradation, carboxypeptidase Y degradation and triple-quadrupole and tandem-quadrupole Fourier-transform mass spectrometry. The sequence for each acidic subunit chain is very similar to the corresponding chain from the related neurotoxin complex, crotoxin, and overall the sequence is similar to the sequences of group I and II phospholipases A2. The N-terminus of the B chain is blocked by pyroglutamic acid. The existence of two distinct and closely related C chains was established. It is unlikely that the small sequence difference can account for the isoforms that are present in purified Mojave toxin and in unfractionated venom.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(90)90045-hDOI Listing

Publication Analysis

Top Keywords

acidic subunit
16
mojave toxin
16
sequence acidic
12
subunit mojave
8
toxin determined
8
edman degradation
8
mass spectrometry
8
high-performance liquid
8
liquid chromatography
8
sequence
5

Similar Publications

Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.

View Article and Find Full Text PDF

The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red light-mediated photomorphogenesis in seedlings, but the function of OsCSN1 in seedling growth and development under far-red light conditions has not been determined.

View Article and Find Full Text PDF

Comparison and Classification of LMW-GS Genes at Loci of Common Wheat.

Genes (Basel)

January 2025

Wheat Research Institute, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou 450002, China.

Background: The low molecular weight glutenin subunits (LMW-GS) of wheat have great effects on food processing quality, but the resolution of LMW-GS and the scoring of their alleles by direct analysis of proteins are difficult due to the larger number of expressed subunits and high similarity of DNA sequences. It is important to identify and classify the LMW-GS genes in order to recognize the LMW-GS alleles clearly and develop the functional markers.

Methods: The LMW-GS genes registered in GenBank were searched at NCBI, and 593 genes with complete coding sequences were obtained, including 146 , 136 , and 311 .

View Article and Find Full Text PDF

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!