Investigation into the causes for the changed biodegradation process of dissolved pyrene after addition of hydroxypropyl-β-cyclodextrin (HPCD).

J Hazard Mater

State Key Laboratory of Marine Environmental Science (Xiamen University), College of the Environmental and Ecology, Xiamen University, Xiamen 361005, PR China.

Published: December 2012

Bioremediation of surface waters contaminated with polycyclic aromatic hydrocarbons (PAHs) is a serious problem, often limited by the low bioavailability of contaminants as a result of their low aqueous solubility. In this study, we studied the influence of hydroxypropyl-β-cyclodextrin (HPCD) addition on the biodegradation of dissolved pyrene in aqueous solution. Five types of unidentified bacterial strains were used with a concentration of pyrene under its solubility limit. The reduction of pyrene content was monitored during the biodegradation process using synchronous fluorimetry. The presence of HPCD changed the rate of pyrene biodegradation by microorganisms due to the formation of an inclusion complex between pyrene and HPCD. The hydrophobicity and the emulsifying activity of microorganisms relative to their biodegrading capacity were investigated. The results indicated that hydrophobicity and emulsifying activity of the microorganisms were important factors that can influence the biodegradation process. The hydrophobicity and emulsifying activity were strongly correlated with the biodegrading capacity of the microorganisms toward pyrene in the presence of solubilizing agents or organized media.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2012.10.011DOI Listing

Publication Analysis

Top Keywords

biodegradation process
12
hydrophobicity emulsifying
12
emulsifying activity
12
dissolved pyrene
8
hydroxypropyl-β-cyclodextrin hpcd
8
activity microorganisms
8
biodegrading capacity
8
pyrene
7
biodegradation
5
investigation changed
4

Similar Publications

A Transcriptome Approach Evaluating the Effects of Atractylenolide I on the Secretion of Estradiol and Progesterone in Feline Ovarian Granulosa Cells.

Vet Sci

December 2024

Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.

(AMK) as an oriental medicine has been used in the treatment of threatened abortion. (AT-I) is one of the major bioactive components of AMK. This study aimed to investigate the effect of AT-I on the secretion of estradiol (E) and progesterone (P) in feline ovarian granulosa cells (FOGCs), which is necessary for pregnancy.

View Article and Find Full Text PDF

Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended.

View Article and Find Full Text PDF

The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.

View Article and Find Full Text PDF

Cisplatin-based platinum compounds are important clinical chemotherapeutic agents that participate in most tumor chemotherapy regimens. Through density-functional theory calculations, the formation and stability of the inorganic oxide carrier, the mechanisms of the hydrolysis reaction of the activated platinum compound, and its binding mechanism with DNA bases can be studied. The higher the oxidation state of Pt (II to IV), the more electrons transfer from the magnesia-gold composite material to the platinum compound.

View Article and Find Full Text PDF

Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!