Arsenic trioxide (ATO) is one of the most potent drugs in cancer chemotherapy, and is highly effective in treating both newly diagnosed and relapse patients with acute promyelocytic leukemia (APL). Despite a number of reports regarding the molecular mechanisms by which ATO promotes anti-tumor or pro-apoptotic activity in hematological and other solid malignancies, the effects of ATO on immune responses remain poorly understood. To further understand and clarify the effects of ATO on immune responses, we sought to examine whether ATO affects the production of nitric oxide (NO) in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, RAW 264.7. Arsenic trioxide was found to prevent NO production in a dose-dependent manner. Arsenic trioxide significantly inhibited the increase in inducible nitric oxide synthase (iNOS) at both the mRNA and protein levels. Furthermore, our analyses revealed that the inhibitory effect of ATO on iNOS expression was ascribed to the prevention of IRF3 phosphorylation, interferon (IFN)-β expression, and STAT1 phosphorylation, but not the prevention of the MyD88-dependent pathway. Taken together, our results indicate that ATO prevents NO production by inhibiting the TIR-domain-containing adaptor protein inducing IFN-β (TRIF)-dependent pathway, thus highlighting an anti-inflammatory property of ATO in innate immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657247PMC
http://dx.doi.org/10.1111/cas.12053DOI Listing

Publication Analysis

Top Keywords

arsenic trioxide
16
nitric oxide
12
raw 2647
8
trif-dependent pathway
8
ato
8
effects ato
8
ato immune
8
immune responses
8
arsenic
4
trioxide prevents
4

Similar Publications

Phase separation-based screening identifies arsenic trioxide as the N-Myc-DNA interaction inhibitor for neuroblastoma therapy.

Cancer Lett

January 2025

Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China. Electronic address:

View Article and Find Full Text PDF

Background: Treatment outcomes for acute promyelocytic leukemia (APL) have improved with all-trans-retinoic acid and arsenic trioxide, yet relapse remains a concern, especially in pediatric patients. The prognostic value of minimal residual disease (MRD) post-induction and the impact of arsenic levels during induction on MRD are not fully understood.

Objectives: To evaluate the relationship between post-induction MRD levels and relapse-free survival (RFS) in pediatric APL patients, and to investigate the correlation between blood arsenic concentration levels during induction therapy and MRD status.

View Article and Find Full Text PDF

Harnessing Arsenic Derivatives and Natural Agents for Enhanced Glioblastoma Therapy.

Cells

December 2024

Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan.

Glioblastoma (GBM) is the most common and lethal intracranial tumor in adults. Despite advances in the understanding of the molecular events responsible for disease development and progression, survival rates and mortality statistics for GBM patients have been virtually unchanged for decades and chemotherapeutic drugs used to treat GBM are limited. Arsenic derivatives, known as highly effective anticancer agents for leukemia therapy, has been demonstrated to exhibit cytocidal effects toward GBM cells by inducing cell death, cell cycle arrest, inhibition of migration/invasion, and angiogenesis.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is a rare type of AML, characterized by the t(15;17) translocation and accounting for 8-15% of cases. The introduction of target therapies, such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), radically changed the management of APL, making it the most curable AML subtype. However, a small percentage (estimated to be 2%) of AML presenting with APL-like morphology and/or immunophenotype lacks t(15;17).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!