Background: Although oral squamous cell carcinomas (OSCCs) commonly overexpress the epidermal growth factor receptor (EGFR), EGFR tyrosine kinase inhibitors (TKIs) exhibit poor efficacy clinically. Activation of the insulin-like growth factor-1 receptor (IGF1R) induces resistance of OSCC cells to EGFR-TKIs in vitro. This study seeks to evaluate the changes in cell cycle status in OSCC cells in response to gefitinib and IGF1R activation.
Methods: SCC-25 OSCC cells were used for in vitro analyses.
Results: Gefitinib caused a 50% reduction in S-phase population, and IGF1R activation caused a 2.8-fold increase; combined treatment yielded a baseline S-phase population. Gefitinib treatment increased the cyclin-dependent kinase inhibitor p27, and this was not abrogated by IGF1R activation. pT157-p27 was noted by immunoblot to be decreased on gefitinib treatment, but this was reversed with IGF1R activation. T157 phosphorylation contributes to cytoplasmic localization of p27 where it can promote cell proliferation and cell motility. Using both subcellular fractionation and immunofluorescence microscopy techniques, IGF1R stimulation was noted to increase the relative cytoplasmic localization of p27; this persisted when combined with gefitinib.
Conclusions: IGF1R activation partially reverses the cell cycle arrest caused by gefitinib in OSCC cells. While IGF1R stimulation does not eliminate the gefitinib-induced increase in total p27, its phosphorylation state and subcellular localization are altered. This may contribute to the ability of the IGF1R to rescue OSCC cells from EGFR-TKI treatment and may have important implications for the use of p27 as a biomarker of cell cycle arrest and response to therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693221 | PMC |
http://dx.doi.org/10.1111/jop.12014 | DOI Listing |
Cancer Immunol Immunother
January 2025
Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
Background: Transferrin receptor (TFRC) uptakes iron-loaded transferrin (TF) to acquire iron and regulates tumor development. Nonetheless, the clinical values and the precise functions of TF-TFRC axis in the development of oral squamous cell carcinoma (OSCC) were still undiscovered, especially the impacts of their regional heterogeneous expression.
Methods: Immunohistochemistry (IHC) was used to analyze the expression of TFRC in 106 OSCC patients.
Pathologica
December 2024
Department of Pharmacy, University of Salerno, Italy.
Objective: This study investigated metformin as a sensitizer for radiotherapy in oral squamous cell carcinoma (OSCC) to reduce the radiation intensity. It evaluated the drug's effect on Chromatin Assembly Factor-1 (CAF-1) expression, whose high levels correlate with worse prognosis of this cancer.
Methods: The effects of metformin, alone and with radiotherapy, were evaluated on CAL27 (HPV-) and SCC154 (HPV+) OSCC cells.
Pathologica
December 2024
Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
The search for reliable prognostic markers in oral squamous cell carcinoma (OSCC) remains a critical need. Tumor-infiltrating lymphocytes (TILs), particularly T lymphocytes, play a pivotal role in the immune response against tumors and are strongly correlated with favorable prognoses. Computational pathology has proven highly effective for histopathological image analysis, automating tasks such as cell detection, classification, and segmentation.
View Article and Find Full Text PDFOral Dis
January 2025
Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.
Objective: Our study investigated how arecoline-induced extracellular vesicle (EV) secretion suppresses PAX1 protein production through DNA hypermethylation and examined whether PAX1 downregulation enhances cancer stemness and immunosuppression in the tumor microenvironment.
Materials And Methods: EVs were isolated from SAS/TW2.6 cancer cell lines using ultracentrifugation and identified using transmission electron microscopy.
Front Immunol
January 2025
Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China.
Oral squamous cell carcinoma (OSCC) is a highly aggressive and malignant tumor of oral cavity with a poor prognosis and high mortality due to the limitations of existing therapies. The significant role of tumor microenvironment (TME) in the initiation, development, and progression of OSCC has been widely recognized. Various cells in TME, including tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), T lymphocytes, tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs), form a complicated and important cellular network to modulate OSCC proliferation, invasion, migration, and angiogenesis by secreting RNAs, proteins, cytokines, and metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!