Objectives: This study has intended to investigate longevity of subcutaneous fat-derived mesenchymal stem cells (SF-MSCs) under extensive culturing. It has also focused on optimization of culture media for them over prolonged periods in vitro.

Materials And Methods: We evaluated SF-MSCs with reference to phenotypic characterization, proliferative ability, karyotype stability and differentiation potency with early (P3) and late passage (P20) conditions, using four different media, DMEM-LG, ALPHA-MEM, DMEM-F12 and DMEM-KO.

Results: This study unravels retention of SF-MSC characteristics in facets of phenotypic expression profile (CD 90, CD 105, CD 73, CD 34, CD 29, CD 54, CD 49d, CD 117, HLA-DR, CD 166, CD 31, CD 44), proliferative characteristics, karyotyping and differentiation potency prolonged culturing to P25 in all media. Population doubling time (PDT) in Alpha MEM, DMEM LG, DMEM F 12, DMEM KO were identified to be (1.81, 1.84, 1.9, 2.08 days) at early passage and (2.93, 2.94, 3.12, 3.06 days) at late passage. As a corollary, Alpha MEM and DMEM LG serve as appropriate basal media for SF-MSC when proliferative potency is considered.

Conclusions: In research, it is imperative that SF-MSC uphold their expansion potency in the aforesaid attributes in all media over extensive culturing, thereby transforming their colossal in vitro potency, with the aim of curing a wide horizon of diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6496274PMC
http://dx.doi.org/10.1111/j.1365-2184.2012.00843.xDOI Listing

Publication Analysis

Top Keywords

differentiation potency
12
subcutaneous fat-derived
8
fat-derived mesenchymal
8
mesenchymal stem
8
stem cells
8
extensive culturing
8
late passage
8
alpha mem
8
mem dmem
8
dmem dmem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!