Arabinogalactan glycoproteins (AGPs) are implicated in virtually all aspects of plant growth and development, yet their precise role remains unknown. Classical AGPs cover the plasma membrane and are highly glycosylated by numerous acidic arabinogalactan polysaccharides O-linked to hydroxyproline. Their heterogeneity and complexity hindered a structural approach until the recent determination of a highly conserved repetitive consensus structure for a 15-sugar residue arabinogalactan subunit with paired glucuronic carboxyls. Based on NMR data and molecular dynamics simulations, we identify these carboxyls as potential intramolecular Ca(2+)-binding sites. Using rapid ultrafiltration assays and mass spectrometry, we verified that AGPs bind Ca(2+) tightly (K(d) ~ 6.5 μM) and stoichiometrically at pH 5. Ca(2+) binding is reversible in a pH-dependent manner. As typical AGPs contain c. 30 Ca(2+)-binding subunits and are bulk components of the periplasm, they represent a Ca(2+) capacitor discharged at low pH by stretch-activated plasma membrane H(+)-ATPases, hence a substantial source of cytosolic Ca(2+). We propose that these Ca(2+) waves prime the 'calcium oscillator', a signal generator essential to the global Ca(2+) signalling pathway of green plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.12005DOI Listing

Publication Analysis

Top Keywords

arabinogalactan glycoproteins
8
plant growth
8
growth development
8
plasma membrane
8
ca2+
6
periplasmic arabinogalactan
4
glycoproteins calcium
4
calcium capacitor
4
capacitor regulates
4
regulates plant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!