Immune response to n-terminal and c-terminal deletion mutants of Aspergillus fumigatus major allergen ASP F 3.

Indian J Clin Biochem

Allergy and Immunology Section, Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, 110007 Delhi, India.

Published: September 2006

The ubiquitous fungus Aspergillus fumigatus causes allergic rhinitis, asthma, sinusitis and allergic bronchopulmonary aspergillosis. A number of major allergens from A. fumigatus are purified, but their structure-function role in the pathogenesis of disease is not known. Such information is essential for devising alternative therapy of fungal allergic diseases. In the present study, N-terminal and C-terminal deletion mutants ofAsp f 3 were constructed and their immunopathological responses studied in a mice model of allergy. Three mutants viz,Asp f 3 (aa 33-168), (aa 1-142), and (aa 23-142) were made by deleting certain amino acids from epitopic regions of full lengthAsp f 3, a major allergen of A. furnigatus. TheAsp f 3 and three mutated proteins were expressed in pET vector. The C-terminal deletion mutantAsp f 3 (aa 1-142) induced elevated IFN-γ but low levels of IL-4 by spleen cells. This mutant also showed significant downregulation of peripheral blood eosinophils and lung inflammation in immunized mice. The N-terminal deletion mutantAsp f 3 (aa 33-168) also exhibited an immuno-suppressive effect in terms of IgE production and induction of Th2 cytokine. The results indicate thatrAsp f 3 and its deletion mutants induced distinct immune-inflammatory responses in mice on challenge with these proteins. The non-IgE binding deletion mutants ofAsp f 3 (aa 1-142 and aa 33-168) could deviate Th2 immune response with a concomitant reduction in airway inflammation and infiltration of inflammatory cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3453993PMC
http://dx.doi.org/10.1007/BF02912906DOI Listing

Publication Analysis

Top Keywords

deletion mutants
16
c-terminal deletion
12
immune response
8
n-terminal c-terminal
8
aspergillus fumigatus
8
major allergen
8
mutants ofasp
8
deletion mutantasp
8
deletion
6
mutants
5

Similar Publications

Establishment of a CRISPR-Cas9-Mediated Genome Editing System in Flax.

CRISPR J

January 2025

Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.

View Article and Find Full Text PDF

Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other.

View Article and Find Full Text PDF

Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN or the runx1 enhancer that during regeneration regulates the expression of the nearby runx1 gene.

View Article and Find Full Text PDF

Defects in DNA single-strand break repair are associated with neurodevelopmental and neurodegenerative disorders. One such disorder is that resulting from mutations in , a scaffold protein that plays a central role in DNA single-strand base repair. XRCC1 is recruited at sites of single-strand breaks by PARP1, a protein that detects and is activated by such breaks and is negatively regulated by XRCC1 to prevent excessive PARP binding and activity.

View Article and Find Full Text PDF

Development and Validation of a Prognostic Molecular Phenotype and Clinical Characterization in Grade III Diffuse Gliomas Treatment with Radio-Chemotherapy.

Ther Clin Risk Manag

January 2025

Department of Oncology, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China.

Background: The relationship between molecular phenotype and prognosis in high-grade gliomas (WHO III and IV, HGG) treated with radiotherapy and chemotherapy is not fully understood and needs further exploration.

Methods: The HGG patients following surgery and treatment with radiotherapy and chemotherapy. Univariate and multivariate Cox analyses were used to assess the independent prognostic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!