Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cleavage of transmembrane receptors by γ-secretase is the final step in the process of regulated intramembrane proteolysis (RIP) and has a significant impact on receptor function. Although relatively little is known about the molecular mechanism of γ-secretase enzymatic activity, it is becoming clear that substrate dimerization and/or the α-helical structure of the substrate can regulate the site and rate of γ-secretase activity. Here we show that the transmembrane domain of the pan-neurotrophin receptor p75(NTR), best known for regulating neuronal death, is sufficient for its homodimerization. Although the p75(NTR) ligands NGF and pro-NGF do not induce homerdimerization or RIP, homodimers of p75(NTR) are γ-secretase substrates. However, dimerization is not a requirement for p75(NTR) cleavage, suggesting that γ-secretase has the ability to recognize and cleave each receptor molecule independently. The transmembrane cysteine 257, which mediates covalent p75(NTR) interactions, is not crucial for homodimerization, but this residue is required for normal rates of γ-secretase cleavage. Similarly, mutation of the residues alanine 262 and glycine 266 of an AXXXG dimerization motif flanking the γ-secretase cleavage site within the p75(NTR) transmembrane domain alters the orientation of the domain and inhibits γ-secretase cleavage of p75(NTR). Nonetheless, heteromer interactions of p75(NTR) with TrkA increase full-length p75(NTR) homodimerization, which in turn potentiates the rate of γ-cleavage following TrkA activation independently of rates of α-cleavage. These results provide support for the idea that the helical structure of the p75(NTR) transmembrane domain, which may be affected by co-receptor interactions, is a key element in γ-secretase-catalyzed cleavage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527965 | PMC |
http://dx.doi.org/10.1074/jbc.M112.382903 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!