mRNA levels do not accurately predict protein levels in eukaryotic cells. To investigate contributions of 5' untranslated regions (5' UTRs) to mRNA-specific differences in translation, we determined the 5' UTR boundaries of 96 yeast genes for which in vivo translational efficiency varied by 80-fold. A total of 25% of genes showed substantial 5' UTR heterogeneity. We compared the capacity of these genes' alternative 5' UTR isoforms for cap-dependent and cap-independent translation using quantitative in vitro and in vivo translation assays. Six out of nine genes showed mRNA isoform-specific translation activity differences of greater than threefold in at least one condition. For three genes, in vivo translation activities of alternative 5' UTR isoforms differed by more than 100-fold. These results show that changing genes' 5' UTR boundaries can produce large changes in protein output without changing the overall amount of mRNA. Because transcription start site (TSS) heterogeneity is common, we suggest that TSS choice is greatly under-appreciated as a quantitatively significant mechanism for regulating protein production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504680PMC
http://dx.doi.org/10.1261/rna.035865.112DOI Listing

Publication Analysis

Top Keywords

transcription start
8
start site
8
differences translation
8
translation activity
8
utr boundaries
8
genes vivo
8
alternative utr
8
utr isoforms
8
vivo translation
8
translation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!