Aims: To study, using simulation, the spectral characteristics of different patterns of atrial fibrillation (AF) at high spatial resolution. Dominant frequency (DF) and organization index (OI) maps have been used to approximate the location of the focal source of high frequency during AF events.

Methods And Results: A realistic three-dimensional model of the human atria that includes fibre orientation, electrophysiological heterogeneity, and anisotropy was implemented. The cellular model was modified to simulate electrical remodelling. More than 43 000 electrograms were calculated on the surface, and were processed to reconstitute the DF and OI maps. Atrial fibrillation episodes were triggered by a source of transitory and of continuous activity (both with a cycle length of 130 ms) in five different locations. The maps obtained during the AF events triggered by transitory foci did not show areas with high DF or OI values. When continuous foci were applied, the DF maps show ample zones with high values in the atrium where the focus was applied; while OI maps display smaller areas with high values, always within the areas of high DF and, in three of five locations, this high-value area was located at the site of focus application and at the nearby area. In the other two locations, the area presenting the highest OI values is small and located at the site of focus application, which allowed its precise localization.

Conclusion: Organization index maps provide a better approximation than DF maps for the localization of ectopic sources of high frequency and continuous activity during episodes of simulated AF in remodelled tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/eus268DOI Listing

Publication Analysis

Top Keywords

organization maps
12
atrial fibrillation
12
areas high
12
high values
12
dominant frequency
8
frequency organization
8
maps
8
realistic three-dimensional
8
high frequency
8
continuous activity
8

Similar Publications

SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues.

Genome Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.

Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells.

View Article and Find Full Text PDF

Functional connectivity gradients and neurotransmitter maps among patients with mild cognitive impairment and depression symptoms.

J Psychiatry Neurosci

January 2025

From the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China (X. Liu, Chen, K. Liu, Yan, Wu); the Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang Province, China (X. Liu, Chen, K. Liu, Yan); the Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, China (Chen); the Hebei General Hospital, Shijiazhuang, Hebei 050050, China (Cheng); the Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China (Wei, Hou, Li, Guo); the Zhoushan Second People's Hospital, Zhoushan, Zhejiang 316000, China (Guo)

Background: Both depressive symptoms and neurotransmitter changes affect the characteristics of functional brain networks in clinical patients. We sought to explore how brain functional grading is organized among patients with mild cognitive impairment and depressive symptoms (D-MCI) and whether changes in brain organization are related to neurotransmitter distribution.

Methods: Using 3 T magnetic resonance imaging (MRI) we acquired functional MRI (fMRI) data from patients with D-MCI, patients with mild cognitive impairment without depression (nD-MCI), and healthy controls.

View Article and Find Full Text PDF

Mapping environmental noise of Guangzhou based on land use regression models.

J Environ Manage

January 2025

Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China. Electronic address:

Background: Environmental noise seriously affects people's health and life quality, but there is a scarcity of noise exposure data in metropolitan cities and at nighttime, especially in developing countries.

Objective: This study aimed to assess the environmental noise level by land use regression (LUR) models and create daytime and nighttime noise maps with high-resolution of Guangzhou municipality.

Methods: A total of 100 monitoring sites were randomly selected according to population density.

View Article and Find Full Text PDF

Nanostructural Analysis of Age-Related Changes Affecting Human Dentin.

Calcif Tissue Int

January 2025

Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan.

Human dentin performs its function throughout life, even though it is not remodeled like bone. Therefore, dentin must have extreme durability against daily repetitive loading. Elucidating its durability requires a comprehensive understanding of its shape, structure, and anisotropy at various levels of its structure.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Jackson Laboratory, Bar Harbor, ME, USA.

Background: Alzheimer's disease (AD) therapeutics have largely been unsuccessful in alleviating disease burden in those afflicted by the disease. The TREAT-AD Consortium is an international group of academic researchers dedicated to identifying novel molecular targets for AD from underexplored areas of disease linked pathology.

Method: Utilizing a top-down expert curation approach of organizing Gene Ontology terms into endophenotypes of AD, we developed 19 biological domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!