A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Empirical bayesian selection of hypothesis testing procedures for analysis of sequence count expression data. | LitMetric

Differential expression analysis of sequence-count expression data involves performing a large number of hypothesis tests that compare the expression count data of each gene or transcript across two or more biological conditions. The assumptions of any specific hypothesis-testing method will probably not be valid for each of a very large number of genes. Thus, computational evaluation of assumptions should be incorporated into the analysis to select an appropriate hypothesis-testing method for each gene. Here, we generalize earlier work to introduce two novel procedures that use estimates of the empirical Bayesian probability (EBP) of overdispersion to select or combine results of a standard Poisson likelihood ratio test and a quasi-likelihood test for each gene. These EBP-based procedures simultaneously evaluate the Poisson-distribution assumption and account for multiple testing. With adequate power to detect overdispersion, the new procedures select the standard likelihood test for each gene with Poisson-distributed counts and the quasi-likelihood test for each gene with overdispersed counts. The new procedures outperformed previously published methods in many simulation studies. We also present a real-data analysis example and discuss how the framework used to develop the new procedures may be generalized to further enhance performance. An R code library that implements the methods is freely available at www.stjuderesearch.org/depts/biostats/software.

Download full-text PDF

Source
http://dx.doi.org/10.1515/1544-6115.1773DOI Listing

Publication Analysis

Top Keywords

test gene
12
empirical bayesian
8
expression data
8
large number
8
hypothesis-testing method
8
quasi-likelihood test
8
procedures
6
gene
5
bayesian selection
4
selection hypothesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!