Disparity vergence is commonly viewed as being controlled by at least two mechanisms, an open-loop vergence-specific burst mechanism analogous to the ballistic drive of saccades, and a closed-loop feedback mechanism controlled by the disparity error. We show that human vergence dynamics for disparity jumps of a large textured field have a typical time course consistent with predominant control by the open-loop vergence-specific burst mechanism, although various subgroups of the population show radically different vergence behaviors. Some individuals show markedly slow divergence responses, others slow convergence responses, others slow responses in both vergence directions, implying that the two vergence directions have separate control mechanisms. The faster time courses usually had time-symmetric velocity waveforms implying open-loop burst control, while the slow response waveforms were usually time-asymmetric implying closed-loop feedback control. A further type of behavior seen in a distinct subpopulation was a compound anomalous divergence response consisting of an initial convergence movement followed by a large corrective divergence movement with time courses implying closed-loop feedback control. This analysis of the variety of human vergence responses thus contributes substantially to the understanding of the oculomotor control mechanisms underlying the generation of vergence movements [corrected].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/12.11.21 | DOI Listing |
J Vis
January 2025
Magic Leap Switzerland GmbH, Zürich, Switzerland.
When rendering the visual scene for near-eye head-mounted displays, accurate knowledge of the geometry of the displays, scene objects, and eyes is required for the correct generation of the binocular images. Despite possible design and calibration efforts, these quantities are subject to positional and measurement errors, resulting in some misalignment of the images projected to each eye. Previous research investigated the effects in virtual reality (VR) setups that triggered such symptoms as eye strain and nausea.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Optometry and Vision Science, Faculty of Science and Technology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia.
Eccentric photorefractometry is widely used to measure eye refraction, accommodation, gaze position, and pupil size. While the individual calibration of refraction and accommodation data has been extensively studied, gaze measurements have received less attention. PowerRef 3 does not incorporate individual calibration for gaze measurements, resulting in a divergent offset between the measured and expected gaze positions.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany.
Purpose: Our study presents a virtual reality-based tangent screen test (VTS) to measure subjective ocular deviations including torsion in nine directions of gaze. The test was compared to the analogous Harms tangent screen test (HTS).
Methods: We used an Oculus Go controller and head-mounted-display with rotation sensors to measure patient's head orientation for the VTS.
BMC Ophthalmol
December 2024
Pennsylvania College of Optometry at Drexel University, Elkins Park, PA, USA.
Background: To compare the effectiveness of a brief binocular vision screening protocol to a comprehensive examination for detecting binocular vision anomalies before and after cataract surgery.
Methods: A comprehensive binocular vision test battery as a gold standard were administered on recruited patients before the first surgery and at the third visit after surgery on the second eye. A receiver operating characteristic (ROC) curve was plotted to illustrate the diagnostic ability of each test.
Ophthalmic Physiol Opt
January 2025
School of Optometry, Indiana University, Bloomington, Indiana, USA.
Purpose: To evaluate the myopic and hyperopic defocus delivered to the retina by a dual focus (DF) myopia control contact lens when myopia exceeds 6.00 D.
Methods: Individuals with high myopia were fitted bilaterally with high-powered DF lenses containing power profiles matching a Coopervision MiSight 1 day contact lens (omafilcon A) and a Coopervision Proclear 1 day single vision (SV) lens.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!