Gravity perception and gravitropic response are essential for plant development. In herbaceous species it is widely accepted that one of the primary events in gravity perception involves the displacement of amyloplasts within specialized cells. However the signaling cascade leading to stem reorientation is not fully known especially in woody species in which primary and secondary growth occur. Several different second messengers and proteins have been suggested to be involved in signal transduction of gravitropism. Reactive oxygen species (ROS) have been implicated as second messengers in several plant hormone responses. It has been shown that ROS are asymmetrically generated in roots by gravistimulation to regions of reduced growth. Proteins involved in detoxification of ROS and defense were identified by mass spectrometry: i.e., Thioredoxin h (Trx h), CuZn superoxide dismutase (CuZn SOD), ascorbate peroxidase (APX2), oxygen evolving enhancer 1 (OEE1), oxygen evolving enhancer 2 (OEE2), and ATP synthase. These differentially accumulated proteins that correspond to detoxification of ROS were analyzed at the mRNA level. The mRNA levels showed different expression patterns than those of the corresponding proteins, and revealed that transcription levels were not completely concomitant with translation. Our data showed that these proteins may play a role in the early response to gravitropic stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745552 | PMC |
http://dx.doi.org/10.4161/psb.22411 | DOI Listing |
Blood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFStroke
February 2025
Neurovascular Research Unit, Pharmacology Department, Complutense Medical School, Instituto Investigación Hospital 12 Octubre, Madrid, Spain (G.D., B.D., A.M., J.M.P., I.L.).
Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, United States of America.
Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China.
Introduction: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated.
Methods: We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!