Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
At low frequencies (hundreds of kHz to a few MHz), local energy absorption is proportional to the conductivity of tissue and the intensity of the internal electric field. At 1 MHz, the electric conductivity ratio between skin and fat is approximately 10; hence, skin would heat more provided the intensity of the electric field is similar in both tissues. It follows that selective and localized heat deposition is only feasible by varying electric fields locally. In this study, we vary local intensities of the internal electric field in skin, fat and muscle by altering its direction through modifying surface distributions of the applied voltage. In addition, we assess the long-term effects of these variations on tissue thermal transport. To this end, analytical solutions of the electric and bioheat equations were obtained using a regular perturbation method. For voltage distributions given by second- and eight-degree functions, the power absorption in fat is much greater than in skin by the electrode center while the opposite is true by the electrode edge. For a sinusoidal function, the absorption in fat varies laterally from greater to lower than in skin, and then this trend repeats from the center to the edge of the electrode. Consequently, zones of thermal confinement selectively develop in the fat layer. Generalizing these functions by parametrization, it is shown that radiofrequency (RF) heating of layered tissues can be selective and precisely localized by controlling the spatial decay, extent and repetition of the surface distribution of the applied voltage. The clinical relevance of our study is to provide a simple, non-invasive method to spatially control the heat deposition in layered tissues. By knowing and controlling the internal electric field, different therapeutic strategies can be developed and implemented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/57/22/7555 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!