Although Rac and its activator Tiam1 are known to stimulate cell-cell adhesion, the mechanisms regulating their activity in cell-cell junction formation are poorly understood. Here, we identify β2-syntrophin as a Tiam1 interactor required for optimal cell-cell adhesion. We show that during tight-junction (TJ) assembly β2-syntrophin promotes Tiam1-Rac activity, in contrast to the function of the apical determinant Par-3 whose inhibition of Tiam1-Rac activity is necessary for TJ assembly. We further demonstrate that β2-syntrophin localizes more basally than Par-3 at cell-cell junctions, thus generating an apicobasal Rac activity gradient at developing cell-cell junctions. Targeting active Rac to TJs shows that this gradient is required for optimal TJ assembly and apical lumen formation. Consistently, β2-syntrophin depletion perturbs Tiam1 and Rac localization at cell-cell junctions and causes defects in apical lumen formation. We conclude that β2-syntrophin and Par-3 fine-tune Rac activity along cell-cell junctions controlling TJ assembly and the establishment of apicobasal polarity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498067 | PMC |
http://dx.doi.org/10.1038/ncb2608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!