Current thoracic artificial lungs (TALs) have blood flow impedances greater than the natural lungs, which can result in abnormal pulmonary hemodynamics. This study investigated the impedance and gas transfer performance of a compliant TAL (cTAL). Fluid-structure interaction analysis was performed using ADINA (ADINA R&D Inc., Watertown, MA) to examine the effect of the inlet and outlet expansion angle, θ, on device impedance and blood flow patterns. Based on the results, the θ = 45° model was chosen for prototyping and in vitro testing. Glycerol was pumped through this cTAL at 2, 4, and 6 L/min at 80 and 100 beats/min, and the zeroth and first harmonic impedance moduli, Z(0) and Z(1), were calculated. Gas transfer testing was conducted at blood flow rates of 3, 5, and 7 L/min. Fluid-structure interaction results indicated that the 45° model had an ideal combination of low impedance and even blood flow patterns and was thus chosen for prototyping. In vitro, Z(0) = 0.53 ± 0.06 mm Hg/(L/min) and Z(1) = 0.86 ± 0.08 mm Hg/(L/min) at 4 L/min and 100 beats/min. Outlet PO(2) and SO(2) values were above 200 mm Hg and 99.5%, respectively, at each flow rate. Thus, the cTAL had lower impedance than hard shell TALs and excellent gas transfer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538888 | PMC |
http://dx.doi.org/10.1097/MAT.0b013e31826dcd23 | DOI Listing |
Sci Adv
January 2025
Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA.
Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.
View Article and Find Full Text PDFKidney360
July 2024
Department of Internal Medicine, University of Kansas Medical Center (KUMC), Kansas City, Kansas.
PLoS One
January 2025
Laboratório de Imunologia Celular (LIM-17), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
Background: NETosis is recognized as an important source of autoantigens. Therefore, we hypothesized whether the pristane-induced lupus mice model shows early activation of neutrophils, the presence of low-density granulocytes (LDGs), and neutrophil extracellular traps (NETs) release, which could contribute to the development of a lupus phenotype.
Methods: Twelve female wild-type Balb/c mice were intraperitoneally injected with pristane (n = 6; pristane group) or saline (n = 6; control group).
Am Surg
January 2025
Department of Pediatric Surgery, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.
Background: Solid pseudopapillary neoplasms (SPNs) arising in the body or tail of the pancreas can be amenable to laparoscopic distal pancreatectomy with or without concomitant splenectomy. The purpose of this study was to evaluate laparoscopic distal pancreatectomy for SPN using the Warshaw technique as a means to preserve spleens in children.
Methods: We reviewed our database of SPN patients 19 years and younger (January 2006-December 2023).
Eur Phys J E Soft Matter
January 2025
Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!