Measuring small compartments with relatively weak gradients by angular double-pulsed-field-gradient NMR.

Magn Reson Imaging

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.

Published: April 2013

NMR diffusion-diffraction patterns observed in compartments in which restricted diffusion occurs are a useful tool for direct extraction of compartment sizes. Such diffusion-diffraction patterns may be observed when the signal intensity E(q,∆) is plotted against the wave-vector q (when q=(2π)(-1)γδG). However, the smaller the compartment sizes are, the higher are the q-values needed to observe such diffractions. Moreover, these q-values should be achieved using short gradient pulses requiring extremely strong gradient systems. The angular double-pulsed-field gradient (d-PFG) NMR methodology has been proposed as a tool to extract compartment sizes using relatively low q-values. In this study, we have used single-PFG (s-PFG) NMR and angular d-PFG NMR to characterize the size of microcapillaries of about 2±1μm in diameter. We found that these microcapillaries are characterized by relatively strong background gradients that completely masked the effects of the microscopic anisotropy (μA) of the sample, resulting in a completely unexpected E(φ) profile in the angular d-PFG NMR experiments. We also show that bipolar angular d-PFG NMR experiments can largely suppress the effect of these background gradients resulting in the expected E(φ) profile from which the compartment dimensions could be obtained with relatively weak gradient pulses. These results demonstrate that the above methodology provides a quick, reliable, non-invasive means for estimating small pore sizes with relatively weak gradients in the presence of large magnetic susceptibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2012.08.007DOI Listing

Publication Analysis

Top Keywords

d-pfg nmr
16
compartment sizes
12
angular d-pfg
12
weak gradients
8
diffusion-diffraction patterns
8
patterns observed
8
gradient pulses
8
background gradients
8
eφ profile
8
nmr experiments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!