Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Autoimmune ablation of pancreatic β-cells and alteration of its microvasculature may be a predictor of Type I diabetes development. A dynamic manganese-enhanced MRI (MEMRI) approach and an empirical mathematical model were developed to monitor whole pancreatic β-cell function and vasculature modifications in mice. Normal and streptozotocin-induced diabetic FVB/N mice were imaged on a 9.4T MRI system using a 3D magnetization prepared rapid acquisition gradient echo pulse sequence to characterize low dose manganese kinetics in the pancreas head, body and tail. Average signal enhancement in the pancreas (head, body, and tail) as a function of time was fit by a novel empirical mathematical model characterizing contrast uptake/washout rates and yielding parameters describing peak signal, initial slope, and initial area under the curve. Signal enhancement from glucose-induced manganese uptake was fit by a linear function. The results demonstrated that the diabetic pancreatic tail had a significantly lower contrast uptake rate, smaller initial slope/initial area under the curve, and a smaller rate of Mn uptake following glucose activation (p<0.05) compared to the normal pancreatic tail. These observations parallel known patterns of β-cell loss and alteration in supportive vasculature associated with diabetes. Dynamic MEMRI is a promising technique for assessing β-cell functionality and vascular perfusion with potential applications for monitoring diabetes progression and/or therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582819 | PMC |
http://dx.doi.org/10.1016/j.mri.2012.09.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!