A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential membrane type 1 matrix metalloproteinase substrate processing with ischemia-reperfusion: relationship to interstitial microRNA dynamics and myocardial function. | LitMetric

Objectives: Membrane type 1 matrix metalloproteinase (MT1-MMP) is critical to a number of proteolytic and profibrotic events. However, upstream regulation of MT1-MMP with myocardial ischemia-reperfusion remains poorly understood. MicroRNAs regulate post-transcriptional events, and in silico mapping has identified a conserved sequence in MT1-MMP for microRNA-133a. This study tested the hypothesis that changes in microRNA-133a regulation occur with myocardial ischemia-reperfusion, which contributes to time- and region-dependent changes in MT1-MMP activity and processing of MT1-MMP substrates.

Methods: Yorkshire pigs (n = 12) underwent ischemia-reperfusion (90 minutes ischemia and 120 minutes reperfusion), where regional preload recruitable stroke work (sonomicrometry), interstitial MT1-MMP activity (microdialysis), Smad2 abundance (immunoblotting), and interstitial microRNA-133a (polymerase chain reaction) were determined within the ischemia-reperfusion and remote regions. Human left ventricular fibroblasts were transduced with microRNA-133a and anti-microRNA-133a (lentivirus) to determine the effects on MT1-MMP protein abundance.

Results: With ischemia-reperfusion, regional preload recruitable stroke work decreased from steady state (139 ± 20 mm Hg to 44 ± 11 mm Hg, P < .05) within the ischemia-reperfusion region. MT1-MMP activity increased in both regions. Phosphorylated Smad2 increased within the ischemia-reperfusion region. Both in vitro and in vivo interstitial levels of microRNA-133a decreased with ischemia and returned to steady-state levels with reperfusion. In vitro transduction of microRNA-133a in left ventricular fibroblasts decreased MT1-MMP levels.

Conclusions: Modulation of MT1-MMP activity and microRNA-133a exportation into the myocardial interstitium occurred in the setting of acute myocardial ischemia-reperfusion. In addition, changes in microRNA-133a expression in left ventricular fibroblasts resulted in an inverse modulation of MT1-MMP abundance. Therefore, targeting of microRNA-133a represents a potentially novel means for regulating the cascade of profibrotic events after ischemia-reperfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602970PMC
http://dx.doi.org/10.1016/j.jtcvs.2012.09.071DOI Listing

Publication Analysis

Top Keywords

membrane type
8
type matrix
8
matrix metalloproteinase
8
myocardial ischemia-reperfusion
8
mt1-mmp activity
8
regional preload
8
preload recruitable
8
recruitable stroke
8
stroke work
8
mt1-mmp
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!