A fractured sandstone aquifer at an industrial site is contaminated with trichloroethene to depths greater than 244 m. Field data indicate that trichloroethene is undergoing reduction to cis-1,2-dichloroethene (cDCE); vinyl chloride and ethene are present at much lower concentrations. Transformation of cDCE by pathways other than reductive dechlorination (abiotic and/or biotic) is of interest. Pyrite, which has been linked to abiotic transformation of chlorinated ethenes, is present at varying levels in the sandstone. To evaluate the possible role of pyrite in transforming cDCE, microcosms were prepared with groundwater, ~40 mg L(-1) cDCE+[(14)C]cDCE, and crushed solids (pure pyrite, pyrite-rich sandstone, or typical sandstone). During 120 d of incubation, the highest level of cDCE transformation occurred with typical sandstone (11-14% (14)CO(2), 1-3% (14)C-soluble products), followed by pyrite-rich sandstone (2-4% (14)CO(2), 1% (14)C-soluble products) and even lesser amounts with pure pyrite. These results indicate pyrite is not likely the mineral involved in transforming cDCE. A separate experiment using only typical sandstone compared the rate of cDCE transformation in non-sterilized, autoclaved, and propylene-oxide sterilized treatments, with pseudo-first order rate constants of 8.7, 5.4, and 1.0 yr(-1), respectively; however, transformation stopped after several months of incubation. Autoclaving increased the volume of pores, adsorption pore diameter, and surface area in comparison to non-sterilized typical sandstone. Nevertheless, autoclaving was less disruptive than chemical sterilization. The results provide definitive experimental evidence that cDCE undergoes anaerobic abiotic and biotic transformation in typical sandstone, with formation of CO(2) and soluble products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2012.09.084 | DOI Listing |
Heliyon
December 2024
Department of Geological Engineering, Universitas Muhammadiyah Kalimantan Timur, 75243, Kalimantan Timur, Kota Samarinda, Indonesia.
Sci Total Environ
December 2024
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China. Electronic address:
CO saline aquifer storage represents a promising strategy for mitigating the environmental impact of greenhouse gas emissions. However, the long-term effects of CO dissolved in formation water on rock minerals remain insufficiently understood. This study utilizes cast thin section analysis, scanning electron microscopy, and energy dispersive spectrometry techniques to perform a comprehensive microscopic investigation on this issue.
View Article and Find Full Text PDFSci Rep
November 2024
Xingzichuan oil production plant of Yanchang Petroleum Co., Ltd, Yan'an, 717400, Shaanxi, China.
As a typical tight reservoir and an important site for unconventional hydrocarbon accumulation, the Chang 6 member of the Yanchang Formation is characterized by complex pore structures and strong heterogeneity. Analysing and characterizing the pore-throat structure is highly important for optimizing oil recovery processes. To clarify the nonhomogeneity and structural characteristics of the pore throats in the southeastern Ordos Basin, tight sandstone from the Chang 6 member was selected for analysis.
View Article and Find Full Text PDFSci Rep
October 2024
National Key Laboratory of Oil & Gas Formation Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China.
Sci Rep
October 2024
College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
Combing macroscopic experimental method and mesoscopic numerical method, this study analyses the strain-softening behaviours of granite and sandstone. From the macroscopic perspective, the stress-strain curves of granite and sandstone under different confining pressures are studied by laboratory triaxial compression test. Variations of post-peak reduction modulus and critical plastic shear strain versus confining stress are obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!