In this study, we demonstrate that emulsified microemulsions and micellar cubosomes are suitable as sustained delivery vehicles for water-soluble proteins. Through structural modifications, the loading efficiency of two model proteins, namely bovine serum albumin (BSA) and cytochrome c could be remarkably increased. A procedure for preparing these particles loaded with optimized amounts of sensitive substances is presented. Loading and dispersion at low temperatures is performed in two successive steps. First, a water-in-oil microemulsion is loaded with the proteins. Subsequently, this phase is dispersed in water resulting in particles with microemulsion and micellar cubic internal structure and a size of approximately 620 nm. This two-step method ensures optimal loading of the particles with the proteins. These nanostructured particles are able to sustain the release of the water-soluble BSA and cytochrome c. Within one day, less than 10% of BSA and 15% of cytochrome c are released. The release rate of cytochrome c is influenced by the nanostructure of the particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la303373q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!