AI Article Synopsis

Article Abstract

In work the data on studying of a parity of the maintenance of the soluble and membrane form of antigen CD23 at almost healthy faces is cited. To the specified sign 3 groups are allocated: in parallel low maintenance membrane and free CD23 (1 group), simultaneous increase of their concentration (2 group) and increase CD23 against significant decrease in concentration sCD23 (3 group). The conclusion becomes that photolytic shedding CD23 is made by the activated cells at increase in the maintenance of phenotypes of lymphocytes CD23+. Increase of expression CD23 by lymphocytes is associated with concentration increase of cytokines IL-6 and IFN-gamma, and a natural mitogen an alpha-fetoprotein. Abscission of cells CD23 and increase of concentration sCD23 occurs at excessive increase in maintenance IgE and anti-inflammatory ofcytokine IL-10. The parity of membrane and free forms CD23 is defined by activity of an expression, shedding and an educational level association.

Download full-text PDF

Source

Publication Analysis

Top Keywords

membrane free
8
increase concentration
8
concentration scd23
8
increase maintenance
8
cd23
7
increase
7
[role shedding
4
shedding activity
4
activity immunocompetent
4
immunocompetent cells
4

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin.

Cell Mol Biol Lett

January 2025

Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.

The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting.

View Article and Find Full Text PDF

Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.

View Article and Find Full Text PDF

Prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) has improved localization of prostate cancer (PC) lesions in biochemical recurrence (BCR) for salvage radiotherapy (SRT). We conducted a retrospective review of patients undergoing F-rhPSMA-7 or F-flotufolastat (F-rhPSMA-7.3)-PET-guided SRT compared with conventional-SRT (C-SRT) without PET.

View Article and Find Full Text PDF

Eliminating osmotic stress during cryoprotectant loading: A mathematical investigation of solute-solvent transport.

Cryobiology

January 2025

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States of America. Electronic address:

Osmotic stresses during cryoprotectant loading induce changes in cellular volume, leading to membrane damage or even cell death. Appropriate model-guided mitigation of these osmotic gradients during cryoprotectant loading is currently lacking, but would be highly beneficial in reducing viability loss during the loading process. To address this need, we reformulate the two-parameter formalism described by Jacobs and Stewart for cryoprotectant loading under the constraint of constant cell volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!